首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A novel OmpY porin was predicted based on the Yersinia pseudotuberculosis genome analysis. Whereas it has the different genomic annotation such as "outer membrane protein N" (ABS46310.1) in str. IP 31758 or "outer membrane protein C2, porin" (YP_070481.1) in str. IP32953, it might be warranted to rename the OmpN/OmpC2 to OmpY, "outer membrane protein Y", where letter "Y" pertained to Yersinia. Both phylogenetic analysis and genomic localization clearly support that the OmpY porin belongs to a new group of general bacterial porins. The recombinant OmpY protein with its signal sequence was overexpressed in porin-deficient Escherichia coli strain. The mature rOmpY was shown to insert into outer membrane as a trimer. The OmpY porin, isolated from the outer membrane, was studied employing spectroscopic, electrophoretic and bilayer lipid membranes techniques. The far UV CD spectrum of rOmpY was essentially identical to that of Y. pseudotuberculosis OmpF. The near UV CD spectrum of rOmpY was weaker and smoother than that of OmpF. The rOmpY single-channel conductance was 180 ± 20 pS in 0.1 M NaCl and was lower than that of the OmpF porin. As was shown by electrophoretic and bilayer lipid membrane experiments, the rOmpY trimers were less thermostable than the OmpF trimers. The porins differed in the trimer-monomer transition temperature by about 20°C. The three-dimensional structural models of the Y. pseudotuberculosis OmpY and OmpF trimers were generated and the intra- and intermonomeric interactions stabilizing the porins were investigated. The difference in the thermal stability of OmpY and OmpF trimers was established to correlate with the difference in intermonomeric polar contacts.  相似文献   

2.
Purified OmpF, OmpC, NmpC, PhoE and Lc (Protein 2) porins from the Escherichia coli outer membrane were incorporated into planar phospholipid bilayer membranes and the permeability properties of the pores studied. Triton X-100 solubilised porin samples showed large and reproducible increases in membrane conductivity composed of discreet single-channel events. The magnitude of the cation selectivity found for the porins was in the order OmpC greater than OmpF greater than NmpC = Lc; PhoE was anion selective. For the cation selective porins the cation/anion permeability ratios in a variety of solutes ranged from 6 to 35. Further information on the internal structure of the porins was obtained by examination of the single-channel conductance and this was used to interpret macroscopic observations and to estimate single-channel diameters. The same porins solubilised in SDS exhibited slight conductance increase with no observable single-channel activity. Use of on-line microcomputer techniques confirmed the ohmic current vs. voltage behaviour for all the single porin channels examined.  相似文献   

3.
Voltage gating in porin channels   总被引:3,自引:0,他引:3  
J H Lakey 《FEBS letters》1987,211(1):1-4
Data from experiments in which porin channels are reconstituted into planar bilayer membranes are reviewed for their relevance to porin channel gating in vivo. Contradictory evidence concerning voltage gating indicates that the different results may stem from the variety of purification techniques employed. The likelihood of voltage gating as a property of E. coli porins in vivo is discussed in relation to the possible magnitude of the membrane potential across the outer membrane.  相似文献   

4.
P Labarca  S Lobos  I Calderón  G Mora 《FEBS letters》1986,197(1-2):211-216
Native porins, from Salmonella typhi Ty2 outer membrane, and porins alkylated with pyridoxal phosphate (Plp) were studied in planar lipid bilayers. The conductance of bilayers exposed to native or chemically modified porins increases in discrete jumps. Conductance histograms for native porins displayed two major peaks at 1.7 and 6.7 nS (in 0.5 M KCl). On the other hand, Plp-treated porins exhibited a single major peak at 1 nS. The relation between bilayer conductance and native porin concentration was linear. However, this relation became logarithmic in the presence of modified porins. The results support the notion that alkaline reduction of S. typhi Ty2 porins with Plp dissociates porin channel trimers in a reversible fashion.  相似文献   

5.
The immunochemistry and structure of enteric bacterial porins are critical to the understanding of the immune response to bacterial infection. We raised 41 monoclonal antibodies (MAbs) to Salmonella typhimurium OmpD and OmpC porin trimers and monomers. Enzyme-linked immunosorbent assays, immunoprecipitations, and/or Western immunoblot techniques indicated that 39 MAbs (11 anti-trimer and 28 anti-monomer) in the panel are porin specific and one binds to the lipopolysaccharide; the specificity of the remaining MAb probably lies in the porin-lipopolysaccharide complex. Among the porin-specific MAbs, 10 bound cell-surface-exposed epitopes, one reacted with a periplasmic epitope, and the remaining 28 recognized determinants that are buried within the outer membrane bilayer. Many of the MAbs reacting with surface-exposed epitopes were highly specific, recognizing only the homologous porin trimers; this suggests that the cell-surface-exposed regions of porins tends to be quite different among S. typhimurium OmpF, OmpC, and OmpD porins. Immunological cross-reaction showed that S. typhimurium OmpD was very closely related to Escherichia coli NmpC and to the Lc porin of bacteriophage PA-2. Immunologically, E. coli OmpG and protein K also appear to belong to the family of closely related porins including E. coli OmpF, OmpC, PhoE, and NmpC and S. typhimurium OmpF, OmpC, and OmpD. It appears, however, that S. typhimurium "PhoE" is not closely related to this group. Finally, about one-third of the MAbs that presumably recognize buried epitopes reacted with porin domains that are widely conserved in 13 species of the family Enterobacteriaceae, but apparently not in the seven nonenterobacterial species tested. These data are evaluated in relation to host immune response to infection by gram-negative bacteria.  相似文献   

6.
Recombinant mutant OmpF porins from Yersinia pseudotuberculosis outer membrane were obtained using site-directed mutagenesis. Here we used four OmpF mutants where single extracellular loops L1, L4, L6, and L8 were deleted one at a time. The proteins were expressed in Escherichia coli at levels comparable to full-sized recombinant OmpF porin and isolated from the inclusion bodies. Purified trimers of the mutant porins were obtained after dialysis and consequent ion-exchange chromatography. Changes in molecular and spatial structure of the mutants obtained were studied using SDS–PAGE and optical spectroscopy (circular dichroism and intrinsic protein fluorescence). Secondary and tertiary structure of the mutant proteins was found to have some features in comparison with that of the full-sized recombinant OmpF. As shown by bilayer lipid membrane technique, the pore-forming activity of purified mutant porins was identical to OmpF porin isolated from the bacterial outer membrane. Lacking of the external loops mentioned above influenced significantly upon the antigenic structure of the porin as demonstrated using ELISA.  相似文献   

7.
The lipid matrix of the outer membrane of Gram-negative bacteria is an asymmetric bilayer composed of a phospholipid inner leaflet and a lipopolysaccharide outer leaflet. Incorporated into this lipid matrix are, among other macromolecules, the porins, which have a sieve-like function for the transport or exclusion of hydrophilic substances. It is known that a reduced amount of porins is found in the outer membrane of rough mutants as compared with wild-type bacteria. This observation was discussed to be caused by a reduced number of insertion sites in the former. We performed electrical measurements on reconstituted planar bilayers composed of lipopolysaccharide on one side and a phospholipid mixture on the other side using lipopolysaccharide from various rough mutant strains of Salmonella enterica serovar Minnesota. We found that pore formation by PhoE trimers that were added to the phospholipid side of the bilayers increased with the increasing length of the lipopolysaccharide core sugar moiety. These results allow us to conclude that the length of the sugar moiety of lipopolysaccharide is the parameter governing pore formation and that no particular insertion sites are required. Furthermore, we found that the voltage gating of the porin channels is strongly dependent on the composition of the lipid matrix.  相似文献   

8.
OmpC-like porin was isolated from the outer membrane (OM) of Yersinia enterocolitica cultured at 37°C (the “warm” variant) and its physicochemical and functional properties were studied. The amino acid sequence of OmpC porin was established, and the primary structure and transmembrane topology of this protein were analyzed in comparison with the OmpF porin isolated from Y. enterocolitica cultured at 6°C (the “cold” variant). Both porins of Y. enterocolitica had a high homology degree (65%) between themselves and with OmpC and OmpF porins from OM of Escherichia coli (58 and 76% homology, respectively). The secondary structure of OmpC and OmpF porins from OM of Y. enterocolitica consists of 16 β-strands connected by short “periplasmic” and longer “extracellular” loops with disordered structure, according to the topological model developed for porins of E. coli. The molecular structures of OmpC and OmpF porins of Y. enterocolitica have significant differences in the structure of the “extracellular” loops and in the position of one of three tryptophan residues. Using the bilayer lipid membrane (BLM) technique, pores formed by OmpC porin of Y. enterocolitica were shown to differ in electrophysiological characteristics from channels of OmpF protein of this microorganism. The isolated OmpC porin reconstructed into BLM displayed functional plasticity similarly to OmpF protein and nonspecific porins of other enterobacteria. The conductivity level of the channels formed by this protein in the BLM was regulated by value of the applied potential.  相似文献   

9.
Homogenous maltoporin (lamB protein), an Escherichia coli outer membrane spanning protein, was incorporated in phospholipid planar bilayers. It generates aqueous channels distinct from those formed by the non-specific porin (OmpF) or by phosphoporin (phoE protein). The single conductance, 150 pS in 1 M NaCl, is much smaller than that of the porins. The channels, which are poorly selective for cations and voltage independent, are specifically inhibited by maltose and maltodextrins. This inhibition, observed in the absence of maltose binding protein, demonstrates that the selectivity of maltoporin for maltose and maltodextrins is an intrinsic property of the protein.  相似文献   

10.
Outer membrane protein F, a major component of the Escherichia coli outer membrane, was crystallized for the first time in lipidic mesophase of monoolein in novel space groups, P1 and H32. Due to ease of its purification and crystallization OmpF can be used as a benchmark protein for establishing membrane protein crystallization in meso, as a "membrane lyzozyme". The packing of porin trimers in the crystals of space group H32 is similar to natural outer membranes, providing the first high-resolution insight into the close to native packing of OmpF. Surprisingly, interaction between trimers is mediated exclusively by lipids, without direct protein-protein contacts. Multiple ordered lipids are observed and many of them occupy identical positions independently of the space group, identifying preferential interaction sites of lipid acyl chains. Presence of ordered aliphatic chains close to a positively charged area on the porin surface suggests a position for a lipopolysaccharide binding site on the surface of the major E. coli porins.  相似文献   

11.
Mitochondrial porin from corn (Zea mays L. B 73) shoots was solubilized with lauryl(dimethyl)-amine oxide and purified by chromatography on a hydroxyapatite:celite column. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified protein had an apparent molecular mass of 35 kD. When reconstituted in planar lipid bilayer membranes the porin formed ion-permeable channels with single-channel conductance of 2.0 and 4.0 nanosiemens in 1 M KCl. At low transmembrane voltages corn porin had the properties of a general diffusion pore with an estimated effective diameter of 1.6 nm and a small selectivity for anions over cations. The primary structure of corn porin seems to be quite different from that of other mitochondrial porins, because it did not cross-react with monoclonal antibodies against human porin and with polyclonal antibodies against yeast porin. Furthermore, the peptide maps of corn and bovine heart porins were very different. A sequence of 21 amino acids obtained by Edman degradation of peptides generated by porin proteolysis with Staphylococcus aureus V8 protease did not show any significant homology with known sequences of mitochondrial porins. Results of our investigation suggest that corn porin possesses functional properties similar to those of other mitochondrial porins, despite major structural differences.  相似文献   

12.
The molecular organization and functional activity of porins isolated from the outer membrane (OM) of the Yersinia enterocolitica and three phylogenetically close nonpathogenic Yersinia species (Y. intermedia, Y. kristensenii, and Y. frederiksenii) cultured at 6-8 degrees C were comparatively studied for the first time. The proteins were isolated in two molecular forms (trimeric and monomeric), and their spatial structures were characterized by the methods of optical spectroscopy, CD and intrinsic protein fluorescence. The studied porins were shown to belong to the beta-structural proteins (they have 59-96% total beta structures and 0-17% alpha helices). The spatial structures of the proteins were demonstrated to depend on the nature of the detergent used for solubilization. Unlike the enterobacterial pore-forming proteins, the porin trimers are less stable to sodium dodecyl sulfate (SDS). The spatial structures of the porins become more compact after the substitution of octyl beta-D-glucoside for SDS: the content of beta structures increases and the accessibility of Trp residues to solvent decreases. It was established with the use of the technique of bilayer lipid membranes that the functional properties of the porins are similar to those of the OmpF proteins of Gram-negative bacteria. Trimers are functionally active forms of the porins. Special features of the pore-forming activity of the Yersinia porins were revealed to depend on the microorganism species and the value of the membrane potential.  相似文献   

13.
General diffusion porins are passive transmembrane channels. We have explored the possibility to create artificial nanopores starting from natural β-barrel structures. Structural elements of bacterial porins were used to build a series of artificial nanopores. The basic module was selected by multi-alignment of general diffusion porins. The sequence corresponded to a highly conserved motif containing two β-strands, which was obtained from Escherichia coli OmpF. Dimeric to octameric repeats were obtained through cDNA recombinant technology. The hexameric repeat was used to test its properties. This protein was expressed, purified and reconstituted in the planar bilayer membranes. It was able to form channels in membranes with a conductance of 300 pS in 150 mm KCl and did not show any relevant voltage-dependence.  相似文献   

14.
Crystalline membranes reconstituted from Escherichia coli OmpF porin and phospholipids were adsorbed to freshly cleaved mica and imaged in solution by the atomic force microscope. The extracellular as well as the periplasmic side of the porin trimers could be identified and the conditions to record topographs at 1-nm lateral and 0.1-nm vertical resolution were established.  相似文献   

15.
Escherichia coli K-12 strain PLB3255 contains a mutation in the ompF gene that results in a 15 amino acid deletion in the porin protein. The mutation (dex) appears to increase the OmpF channel size, allowing the PLB3255 cells to grow on maltodextrins in the absence of a functional maltoporin. Porin isolated from strain PLB3255, which contains a wild-type ompC gene, was separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and shown to contain 50-60% trimer aggregates and 35-40% of a 50-kDa "dimer". When the porin isolate was heated to 100 degrees C and separated on SDS gels containing 8 M urea, both the trimer and the "dimer" were recovered in a single band at 36 kDa that corresponded in mobility to wild-type OmpC porin. An analysis of the temperature stability of the isolate showed that the OmpC "dimer" was less stable and denatured at 66 degrees C compared to 81 degrees C for the trimer. To separate these aggregates, the unheated porin was suspended in 30% SDS, applied to a Sephadex G-200 gel filtration column, and eluted with 0.5% sodium deoxycholate. Two peaks were recovered containing separated trimers and "dimers". Circular dichroism spectra of isolated dimers and trimers indicated similar amounts of beta-structure. The isolated dimers and trimers were reconstituted into artificial membranes. Electrical conductance across planar bilayer lipid membranes and liposome swelling assays showed that the two isolates had similar channel-forming activity. Four other ompF deletion mutants of the same phenotype were also shown to produce 50-kDa OmpC porin "dimers".(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The spatial organization of outer-membrane porins is studied by optical spectroscopy and molecular modeling. It was found that the OmpF and OmpC porins from Yеrsiniа ruckeri are β-structured membrane proteins typical of the pore-forming proteins of other Gram-negative bacteria. The spatial structures of monomers and trimers of the OmpC and OmpF porins from Y. ruckeri are simulated using methods of structural bioinformatics. It was found that the structural stability of the more thermostable OmpF trimer is sustained by a greater number of hydrogen bonds and hydrophobic interactions. The main differences of the spatial structures of the test porins are observed in the structure of their outer loops. There are three tryptophan residues in the molecules of the OmpC and OmpF porins of Y. ruckeri. It is demonstrated by moleculardynamics methods that after thermal denaturation the solvent accessibility of the Trp212 residue in OmpF porin increased by two times, while the solvent accessibility of a Trp184 residue in OmpC porin was not increased. It is hypothesized that the red-shifted tryptophan fluorescence spectrum of OmpF porin during thermal denaturation is due to the behavior of the Trp212 residue.  相似文献   

17.
Purified porin OmpF from Escherichia coli outer membrane was chemically modified by acetylation and succinylation of amino groups and by amidation of the carboxyl groups. Native and chemically modified porins were incorporated into lipid bilayer membranes and the permeability properties of the pores were studied. Acetylation and succinylation of the porin trimers had almost no influence on the single channel conductance in the presence of small cations and anions and the cation selectivity remained essentially unchanged as compared with the native porin. Amidation had also only little influence on the single channel conductance and changed the pore conductance at maximum by less than 50%, whereas the cation selectivity of the porin is completely lost after amidation. The results suggest that the structure of the porin pore remains essentially unchanged after chemical modification of the pores and that their cation selectivity is caused by an excess of negatively charged groups inside the pore and/or on the surface of the protein. Furthermore, it seems very unlikely that the pore contains any positively charged group at neutral pH.  相似文献   

18.
Yersinia pseudotuberculosis outer membrane (OM) recombinant mutant OmpF porins with deletions of the external loops L1, L6 and L8 were obtained using site-directed mutagenesis of the recombinant plasmid including ompF gene. Heterologeous expression of the mutant proteins was carried out in strain Rosetta of Escherichia coli (Novagen, USA), porins with the deletions were isolated from the inclusion bodies. Mutant proteins in oligomeric form were obtained as result of dialysis and ion-exchange chromatography. Spatial structure of the mutant proteins was demonstrated to have special features in comparison with that of the full-structured OmpF porin on the level of both secondary and tertiary structure. Lacking of the loops L1, L6 and L8 didn't affect the conductivity level of Y pseudotuberculosis porin channel as shown using bilayer lipid membrane (BLM) technique. Lacking of the loops mentioned above has a significant influence on the antigenic structure of the mutant porins as demonstrated with use of immunoblotting technique and ELISA.  相似文献   

19.
The molecular organization and functional activity of porins isolated from the outer membrane (OM) of the Yersinia enterocolitica and three phylogenetically close nonpathogenic Yersinia species (Y. intermedia, Y. kristensenii, and Y. frederiksenii) cultured at 6–8°C were comparatively studied for the first time. The proteins were isolated in two molecular forms (trimeric and monomeric), and their spatial structures were characterized by the methods of optical spectroscopy, CD and intrinsic protein fluorescence. The studied porins were shown to belong to the β-structural proteins (they have 59–96% total β structures and 0–17% α helices). The spatial structures of the proteins were demonstrated to depend on the nature of the detergent used for solubilization. Unlike the enterobacterial pore-forming proteins, the porin trimers are less stable to sodium dodecyl sulfate (SDS). The spatial structures of the porins become more compact after the substitution of octyl β-D-glucoside for SDS: the content of β structures increases and the accessibility of Trp residues to solvent decreases. It was established with the use of the technique of bilayer lipid membranes that the functional properties of the porins are similar to those of the OmpF proteins of Gram-negative bacteria. Trimers are functionally active forms of the porins. Special features of the pore-forming activity of the Yersinia porins were revealed to depend on the microorganism species and the value of the membrane potential.  相似文献   

20.
Korkmaz F  Köster S  Yildiz O  Mäntele W 《Biochemistry》2008,47(46):12126-12134
We have investigated the temperature-dependent interaction of the porins OmpF from Paracoccus denitrificans and OmpG from Escherichia coli with lipid molecules after reconstitution in lecithin. Effects of incubation at increased temperatures on activity were tested by functional experiments for OmpG and compared with previously published results of OmpF in order to understand the activity loss of OmpF with monomerization. Protein-lipid interaction was monitored by different reporter groups both from lipid molecules and from protein. OmpF loses its activity by approximately 90% at 50 degrees C while OmpG does not show a temperature-dependent change in activity between room temperature and 50 degrees C. The interaction between OmpF and lipid molecules is severely altered in a two-step mechanism at 55 and approximately 75 degrees C for OmpF. The first step is attributed to changes in the degree of interaction between the aromatic girdle of OmpF and the interfacial region of the lipid bilayer, leading to monomerization of this trimeric porin. The second step at 75 degrees C is attributed to the changes in lipid-porin monomer interaction. Around 90 degrees C, reconstituted porin aggregates. For OmpG, changes in lipid-protein interaction were observed starting from approximately 80 degrees C because of temperature-induced breakdown of its folding. This study provides deeper understanding of porin-lipid bilayer interaction as a function of temperature and can explain the functional breakdown by monomerization while porin secondary structure is still preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号