共查询到20条相似文献,搜索用时 0 毫秒
1.
New photoreactive tRNA derivatives for probing the peptidyl transferase center of the ribosome 下载免费PDF全文
Three new photoreactive tRNA derivatives have been synthesized for use as probes of the peptidyl transferase center of the ribosome. In two of these derivatives, the 3' adenosine of yeast tRNA(Phe) has been replaced by either 2-azidodeoxyadenosine or 2-azido-2'-O-methyl adenosine, while in a third the 3'-terminal 2-azidodeoxyadenosine of the tRNA is joined to puromycin via a phosphoramidate linkage to generate a photoreactive transition-state analog. All three derivatives bind to the P site of 70S ribosomes with affinities similar to that of unmodified tRNA(Phe) and can be cross-linked to components of the 50S ribosomal subunit by irradiation with near-UV light. Characteristic differences in the cross-linking patterns suggest that these tRNA derivatives can be used to follow subtle changes in the position of the tRNA relative to the components of the peptidyl transferase center. 相似文献
2.
3.
4.
Terminal oxidation-reduction of yeast phenylalanine tRNA prevents donor and acceptor function at the peptidyl transferase center 总被引:3,自引:0,他引:3
Periodate oxidation of the ribose of the 3′-terminal adenosine of yeast tRNAPhe followed by borohydride reduction has the net effect of splitting the C2′C3′ bond leaving two primary alcohol groups at these carbon atoms. This modified tRNA (tRNAox-red) could be acylated with phenylalanine but could not function as either a donor or acceptor at the peptidyl transferase center of the ribosome. Assays were performed with the phenylalanyl-pentanucleotides, CACCAox-red(acetylPhe) and CACCAox-red(Phe), which were isolated from the 3′-end of appropriately esterified tRNAox-red. Adoox-red(Phe) isolated from Phe-tRNAox-red was also inactive as an acceptor, but synthetic Adoox-red(Phe), a mixture of the 2′ and 3′ phenylalanyl esters, was active with an apparent Km of 1.16 mM compared to 0.2 mM for control Ado(Phe). These results are interpreted to mean that (1) biosynthetic aminoacylation of tRNAox-red occurs specifically at the 2′-hydroxyl, (2) there is no 2′:3′ tautomerization in the ring-opened structure, and (3) peptidyl transferase recognizes specifically the 3′-aminoacyl esters of tRNA. 相似文献
5.
6.
The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity 总被引:3,自引:2,他引:1
Ribosomal variants carrying mutations in active site nucleotides are severely compromised in their ability to catalyze peptide bond formation (PT) with minimal aminoacyl tRNA substrates such as puromycin. However, catalysis of PT by these same ribosomes with intact aminoacyl tRNA substrates is uncompromised. These data suggest that these active site nucleotides play an important role in the positioning of minimal aminoacyl tRNA substrates but are not essential for catalysis per se when aminoacyl tRNAs are positioned by more remote interactions with the ribosome. Previously reported biochemical studies and atomic resolution X-ray structures identified a direct Watson-Crick interaction between C75 of the A-site substrate and G2553 of the 23S rRNA. Here we show that the addition of this single cytidine residue (the C75 equivalent) to puromycin is sufficient to suppress the deficiencies of active site ribosomal variants, thus restoring "tRNA-like" behavior to this minimal substrate. Studies of the binding parameters and the pH-dependence of catalysis with this minimal substrate indicate that the interaction between C75 and the ribosomal A loop is an essential feature for robust catalysis and further suggest that the observed effects of C75 on peptidyl transfer activity reflect previously reported conformational rearrangements in this active site. 相似文献
7.
A photoaffinity labeling puromycin analogue, Nepsilon-(2-nitro-4-azidophenyl)-L-lysinyl puromycin aminonucleoside (NAP-Lys-Pan), was synthesized and used for investigation of the peptidyl transferase center of 70S riobsomes. Visible light irradiation of NAP-Lys-Pan led to covalent linkage of the analogue with Escherichia coli ribosomes. In a subsequent step, poly(uridylic acid) was employed to direct Ac[14C]Phe-tRNA to the P sites of the photolabeled ribosomes. Transpeptidation of Ac[14C]phenylalanine to the bound NAP-Lys-Pan resulted in selective incorporation of radioactive label into the peptidyl transferase A site. Dissociation of the ribosomes into subunits, and digestion of the RNA components, indicated that the radioactive label was incorporated into a protein fraction of the 50S subunit. 相似文献
8.
Peptide bond formation is catalyzed at the peptidyl transferase center (PTC) of the large ribosomal subunit. Crystal structures of the large ribosomal subunit of Haloarcula marismortui (Hma) complexed with several analogs that represent either the substrates or the transition state intermediate of the peptidyl transferase reaction show that this reaction proceeds through a tetrahedral intermediate with S chirality. The oxyanion of the tetrahedral intermediate interacts with a water molecule that is positioned by nucleotides A2637 (E. coli numbering, 2602) and (methyl)U2619(2584). There are no Mg2+ ions or monovalent metal ions observed in the PTC that could directly promote catalysis. The A76 2' hydroxyl of the peptidyl-tRNA is hydrogen bonded to the alpha-amino group and could facilitate peptide bond formation by substrate positioning and by acting as a proton shuttle between the alpha-amino group and the A76 3' hydroxyl of the peptidyl-tRNA. 相似文献
9.
The insulin receptor of human placenta even after extensive purification is phosphorylated in the presence of [γ-32P]ATP and NaF, and is dephosphorylated again on incubation in NaF-free medium. Insulin stimulates phosphate incorporation into the Mr95 000 subunit probably by activation of the phosphorylation step. Our data suggest that the insulin receptor contains both kinase and phosphatase activities that may control the phosphorylation state of the receptor. 相似文献
10.
11.
Schäfer MA Tastan AO Patzke S Blaha G Spahn CM Wilson DN Nierhaus KH 《The Journal of biological chemistry》2002,277(21):19095-19105
The arrival of high resolution crystal structures for the ribosomal subunits opens a new phase of molecular analysis and asks for corresponding analyses of ribosomal function. Here we apply the phosphorothioate technique to dissect tRNA interactions with the ribosome. We demonstrate that a tRNA bound to the P site of non-programmed 70 S ribosomes contacts predominantly the 50 S, as opposed to the 30 S subunit, indicating that codon-anticodon interaction at the P site is a prerequisite for 30 S binding. Protection patterns of tRNAs bound to isolated subunits and programmed 70 S ribosomes were compared. The results suggest the presence of a movable domain in the large ribosomal subunit that carries tRNA and reveal that only approximately 15% of a tRNA, namely residues 30 +/- 1 to 43 +/- 1, contact the 30 S subunit of programmed 70 S ribosomes, whereas the remaining 85% make contact with the 50 S subunit. Identical protection patterns of two distinct elongator tRNAs at the P site were identified as tRNA species-independent phosphate backbone contacts. The sites of protection correlate nicely with the predicted ribosomal-tRNA contacts deduced from a 5.5-A crystal structure of a programmed 70 S ribosome, thus refining which ribosomal components are critical for tRNA fixation at the P site. 相似文献
12.
13.
Role of Mg++ in the mithramycin-DNA interaction: evidence for two types of mithramycin-Mg++ complex 总被引:1,自引:0,他引:1
Mithramycin(MTR, structure shown in Figure 1) [and the related compound Chromomycin A3(CHRA3)] are antitumor antibiotics which inhibit DNA dependent RNA polymerase activity via reversible interaction with DNA only in the presence of divalent metal ion such as Mg++. In order to understand the role of Mg++ in MTR-DNA interaction, absorbance and CD spectroscopic techniques are employed to study the binding of MTR to Mg++. These studies show: i) the drug alone binds to Mg++ and ii) two different types of drug-Mg++ complexes are formed at low(Complex I) and high(Complex II) ratios of the concentration of Mg++ and MTR. We propose that these two complexes would bind to the same DNA with different affinities and rates. This result suggests that the relative concentration of Mg++ is an important factor to be taken into account to understand the molecular basis of MTR-DNA interaction. 相似文献
14.
15.
Translocation is an essential step in the elongation cycle of the protein synthesis that allows for the continual incorporation of new amino acids to the growing polypeptide. Movement of mRNA and tRNAs within the ribosome is catalyzed by EF-G binding and GTP hydrolysis. The 30S subunit decoding center is crucial for the selection of the cognate tRNA. However, it is not clear whether the decoding center participates in translocation. We disrupted the interactions in the decoding center by mutating the universally conserved 16S rRNA bases G530, A1492, and A1493, and the effects of these mutations on translocation were studied. Our results show that point mutation of any of these 16S rRNA bases inhibits EF-G-dependent translocation. Furthermore, the mutant ribosomes showed increased puromycin reactivity in the pretranslocation complexes, indicating that the dynamic equilibrium of the peptidyl tRNA between the classical and hybrid-state configurations is influenced by contacts in the decoding center. 相似文献
16.
Studies on the catalytic site of rat liver HMG-CoA reductase: interaction with CoA-thioesters and inactivation by iodoacetamide 总被引:1,自引:0,他引:1
The localization of reactive cysteines and characterization of the HMG-CoA binding domain of rat liver HMG-CoA reductase were studied using iodoacetamide (IAAD) and short-chain acyl-CoA thioesters. Freeze-thaw-solubilized HMG-CoA reductase is irreversibly inactivated by IAAD with a second order rate constant of 0.78 M-1 sec-1 at 37 degrees C and pH 7.2. This IAAD inactivation is slowed down by pretreatment of the enzyme with disulfides, indicating that inactivation of HMG-CoA reductase occurs mainly through alkylation of specific cysteine residues in the protein. The substrate HMG-CoA, but not NADP(H), effectively protects the reductase from IAAD inactivation. When both HMG-CoA and NADP(H) are present, the reductase is inactivated by IAAD at a rate much faster than the inactivation in the presence of HMG-CoA alone. Of the two moieties of the HMG-CoA thioester, the CoA moiety confers protection from IAAD inactivation whereas HMG is totally ineffective. A series of CoA-thioesters of mono- and dicarboxylic acids of various size were tested for their effect on the activity of HMG-CoA reductase. The CoA analog, desulfo-CoA (des-CoA), and all CoA-thioesters of monocarboxylic acids of up to 6 carbons in length exhibit mixed-type inhibition of reductase activity. The competitive inhibition constants (Ki) for these compounds vary between 1 and 2 mM, whereas the noncompetitive component (K'i) is relatively constant (540 +/- 20 microM). As the acyl chain length increases beyond 6 carbons, the thioesters of monocarboxylic acids become more potent and acquire the characteristics of pure noncompetitive inhibitors. In contrast, the monothioesters of dicarboxylic acids are pure competitive inhibitors with Ki values which are similar to the Ki values of the corresponding thioesters of monocarboxylates. HMG does not affect reductase activity in concentrations of up to 2 mM, yet it greatly enhances the inhibition of the enzyme by des-CoA. Specifically, HMG affects only the Ki value of des-CoA by decreasing it from 1030 microM to 280 microM. The results indicate that reactive cysteine(s) are localized in the catalytic site of HMG-CoA reductase. Within the active site, these cysteines are closely associated with and probably participate in the binding of the CoA moiety of the substrate HMG-CoA. The results are also consistent with the existence of a noncatalytic hydrophobic site in HMG-CoA reductase. 相似文献
17.
J P Klinman 《Biochemistry》1975,14(12):2568-2574
Yeast alcohol dehydrogenase is inactivated and alkylated by styrene oxide in a single exponential kinetic process. The concentration dependence of half-times for inactivation indicates the formation of an enzyme inhibitor complex, KI = 2.5 times 10(-2) M at pH 8.0. Reduced nicotinamide adenine dinucleotide (NADH), at a concentration of 3 times 10(-4) M where Kd congruent to 1 times 10(-5) M, has a small effect on kinetic parameters for inactivation. Although benzyl alcohol and acetamide-NADH increase the KI for styrene oxide in a manner consistent with their dissociation constants, substrate also increases the rate of inactivation at high styrene oxide concentrations. The reciprocal of half-times for inactivation, extrapolated to infinite styrene oxide concentration, increases with pH between 7.6 and 9.0, pK congruent to 8.5. The stoichiometry of alkylation by [3H]styrene oxide is 2.2 mol of reagent incorporated/mol of subunit, and is accompanied by the loss of 1.9 mol of sulfhydryl/mol of subunit; prior alkylation with iodoacetamide reduces the stoichiometry to 0.88:1, and increases the rate of labeling. Tryptic digests of enzyme modified with [14C]iodoacetamide or [3H]styrene oxide produce two major peptides which cochromatograph, indicating that styrene oxide and iodoacetamide modify the same cysteine residues. Previous investigators have reported that iodoacetate, iodoacetamide, and butyl isocyanate alkylate either of two reactive cysteines of yeast alcohol dehydrogenase; both cysteines cannot be modified simultaneously [Belke et al. (1974), Biochemistry 13, 3418]. The inactivation of enzyme by p-chloromercuribenzoate (PCMB) is reported here to be accompanied by the incorporation of 2.3 mol of PCMB/mol of enzyme subunits, in analogy with styrene oxide; the planarity of the alkylating agent appears to be an important factor in determining the stoichiometry of labeling. 相似文献
18.
Valyl-tRNA synthetase (ValRS) has difficulty discriminating between its cognate amino acid, valine, and structurally similar amino acids. To minimize translational errors, the enzyme catalyzes a tRNA-dependent editing reaction that prevents accumulation of misacylated tRNA(Val). Editing occurs with threonine, alanine, serine, and cysteine, as well as with several nonprotein amino acids. The 3'-end of tRNA plays a vital role in promoting the tRNA-dependent editing reaction. Valine tRNA having the universally conserved 3'-terminal adenosine replaced by any other nucleoside does not stimulate the editing activity of ValRS. As a result 3'-end tRNA(Val) mutants, particularly those with 3'-terminal pyrimidines, are stably misacylated with threonine, alanine, serine, and cysteine. Valyl-tRNA synthetase is unable to hydrolytically deacylate misacylated tRNA(Val) terminating in 3'-pyrimidines but does deacylate mischarged tRNA(Val) terminating in adenosine or guanosine. Evidently, a purine at position 76 of tRNA(Val) is essential for translational editing by ValRS. We also observe misacylation of wild-type and 3'-end mutants of tRNA(Val) with isoleucine. Valyl-tRNA synthetase does not edit wild-type tRNA(Val)(A76) mischarged with isoleucine, presumably because isoleucine is only poorly accommodated at the editing site of the enzyme. Misacylated mutant tRNAs as well as 3'-end-truncated tRNA(Val) are mixed noncompetitive inhibitors of the aminoacylation reaction, suggesting that ValRS, a monomeric enzyme, may bind more than one tRNA(Val) molecule. Gel-mobility-shift experiments to characterize the interaction of tRNA(Val) with the enzyme provide evidence for two tRNA binding sites on ValRS. 相似文献
19.
Mechanistic studies of peptidyl prolyl cis-trans isomerase: evidence for catalysis by distortion 总被引:9,自引:0,他引:9
Cyclophilin, the cytosolic binding protein for the immunosuppressive drug cyclosporin A, has recently been shown to be identical with peptidyl prolyl cis-trans isomerase [Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., & Schmid, F.X. (1989) Nature 337, 476; Takahashi, N., Hayano, T., & Suzuki, M. (1989) Nature 337, 473]. To provide a mechanistic framework for studies of the interaction of cyclophilin with cyclosporin, we investigated the mechanism of the PPI-catalyzed cis to trans isomerization of Suc-Ala-Xaa-cis-Pro-Phe-pNA (Xaa = Ala, Gly). Our mechanistic studies of peptidyl prolyl cis-trans isomerase include the determination of steady-state kinetic parameters, pH and temperature dependencies, and solvent and secondary deuterium isotope effects. The results of these experiments support a mechanism involving catalysis by distortion in which the enzyme uses free energy released from favorable, noncovalent interactions with the substrate to stabilize a transition state that is characterized by partial rotation about the C-N amide bond. 相似文献