首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Since parathyroid hormone (PTH) increased FGF2 mRNA and protein expression in osteoblasts, and serum FGF-2 was increased in osteoporotic patients treated with PTH, we assessed whether the anabolic effect of PTH was impaired in Fgf2-/- mice. Eight-week-old Fgf2+/+ and Fgf2-/- male mice were treated with rhPTH 1-34 (80mug/kg) for 4 weeks. Micro-CT and histomorphometry demonstrated that PTH significantly increased parameters of bone formation in femurs from Fgf2+/+ mice but the changes were smaller and not significant in Fgf2-/- mice. IGF-1 was significantly reduced in serum from PTH-treated Fgf2-/- mice. DEXA analysis of femurs from Fgf2+/+, Fgf2+/-, and Fgf2-/- mice treated with rhPTH (160mug/kg) for 10 days showed that PTH significantly increased femoral BMD in Fgf2+/+ by 18%; by only 3% in Fgf2+/- mice and reduced by 3% in Fgf2-/- mice. We conclude that endogenous Fgf2 is important for maximum bone anabolic effect of PTH in mice.  相似文献   

2.
3.
The trade‐off between reproductive investment and lifespan is the single most important concept in life‐history theory. A variety of sources of evidence support the existence of this trade‐off, but the physiological costs of reproduction that underlie this relationship remain poorly understood. The Free Radical Theory of Ageing suggests that oxidative stress, which occurs when there is an imbalance between the production of damaging Reactive Oxygen Species (ROS) and protective antioxidants, may be an important mediator of this trade‐off. We sought to test this theory by manipulating the reproductive investment of female mice (Mus musculus domesticus) and measuring the effects on a number of life history and oxidative stress variables. Females with a greater reproductive load showed no consistent increase in oxidative damage above females who had a smaller reproductive load. The groups differed, however, in their food consumption, reproductive scheduling and mean offspring mass. Of particular note, females with a very high reproductive load delayed blastocyst implantation of their second litter, potentially mitigating the costs of energetically costly reproductive periods. Our results highlight that females use strategies to offset particularly costly periods of reproduction and illustrate the absence of a simple relationship between oxidative stress and reproduction.  相似文献   

4.
5.
Inflammatory periodontal diseases constitute one of the most common infections in humans, resulting in the destruction of the supporting structures of the dentition. Circulating neutrophils are an essential component of the human innate immune system. We observed that mice deficient for the major lysosomal-associated membrane protein-2 (LAMP-2) developed severe periodontitis early in life. This development was accompanied by a massive accumulation of bacterial plaque along the tooth surfaces, gingival inflammation, alveolar bone resorption, loss of connective tissue fiber attachment, apical migration of junctional epithelium, and pathological movement of the molars. The inflammatory lesions were dominated by polymorphonuclear leukocytes (PMNs) apparently being unable to efficiently clear bacterial pathogens. Systemic treatment of LAMP-2-deficient mice with antibiotics prevented the periodontal pathology. Isolated PMNs from LAMP-2-deficient mice showed an accumulation of autophagic vacuoles and a reduced bacterial killing capacity. Oxidative burst response was not altered in these cells. Latex bead and bacterial feeding experiments showed a reduced ability of the phagosomes to acquire an acidic pH and late endocytic markers, suggesting an impaired fusion of late endosomes-lysosomes with phagosomes. This study underlines the importance of LAMP-2 for the maturation of phagosomes in PMNs. It also underscores the requirement of lysosomal fusion events to provide sufficient antimicrobial activity in PMNs, which is needed to prevent periodontal disease.  相似文献   

6.
7.
One of the phenotypes of mice with targeted disruption of the uncoupling protein-2 gene (Ucp2-/-) is greater macrophage phagocytic activity and free radical production, resulting in a striking resistance to infectious microorganisms. In this study, the molecular mechanisms of this enhanced immune response were investigated. We found that levels of nitric oxide measured in either plasma or isolated macrophages from Ucp2-/- mice are significantly elevated in response to bacterial lipopolysaccharide challenge compared with similarly treated Ucp2+/+ mice. Likewise, expression of inducible nitric-oxide synthase and inflammatory cytokines is higher in Ucp2-/- mice in vivo and in vitro. Key steps in the activation cascade of nuclear factor (NF)-kappa B, including I kappa B kinase and nuclear translocation of NF-kappa B subunits, are all remarkably enhanced in Ucp2-/- mice, most notably even under basal conditions. The elevated basal activity of I kappa B kinase in macrophages from Ucp2-/- mice can be blocked by cell-permeable inhibitors of superoxide and hydrogen peroxide generation, but not by a specific inhibitor for inducible nitric-oxide synthase. Isolated mitochondria from Ucp2-/- cells produced more superoxide/hydrogen peroxide. We conclude that mitochrondrially derived reactive oxygen from Ucp2-/- cells constitutively activates NF-kappa B, resulting in a "primed" state to both potentiate and amplify the inflammatory response upon subsequent stimulation.  相似文献   

8.
Parasitic-infection studies on rhesus macaque monkeys have shown juvenile animals to be more susceptible to infection than adults, but the immunological mechanism for this is not known. In this study, we investigated the age-dependent genesis of helminth-induced type 2 immune responses using adult (6-8-wk-old) and juvenile (21-28-d-old) mice. Following infection with the parasitic nematode Nippostrongylus brasiliensis, juvenile mice had increased susceptibility to infection relative to adult mice. Juvenile mice developed a delayed type 2 immune response with decreased Th2 cytokine production, IgE Ab responses, mouse mast cell protease 1 levels, and intestinal goblet cell induction. This innate immune defect in juvenile mice was independent of TLR signaling, dendritic cells, or CD4(+) cell function. Using IL-4-eGFP mice, it was demonstrated that the numbers of IL-4-producing basophil and eosinophils were comparable in young and adult naive mice; however, following helminth infection, the early induction of these cells was impaired in juvenile mice relative to older animals. In nonhelminth models, there was an innate in vivo defect in activation of basophils, but not eosinophils, in juvenile mice compared with adult animals. The specific role for basophils in this innate defect in helminth-induced type 2 immunity was confirmed by the capacity of adoptively transferred adult-derived basophils, but not eosinophils, to restore the ability of juvenile mice to expel N. brasiliensis. The defect in juvenile mice with regard to helminth-induced innate basophil-mediated type 2 response is relevant to allergic conditions.  相似文献   

9.
Brugada syndrome (BrS) is associated with ventricular tachycardia originating particularly in the right ventricle (RV). We explore electrophysiological features predisposing to such arrhythmic tendency and their possible RV localization in a heterozygotic Scn5a+/- murine model. Na(v)1.5 mRNA and protein expression were lower in Scn5a+/- than wild-type (WT), with a further reduction in the RV compared with the left ventricle (LV). RVs showed higher expression levels of K(v)4.2, K(v)4.3 and KChIP2 in both Scn5a+/- and WT. Action potential upstroke velocity and maximum Na(+) current (I(Na)) density were correspondingly decreased in Scn5a+/-, with a further reduction in the RV. The voltage dependence of inactivation was shifted to more negative values in Scn5a+/-. These findings are predictive of a localized depolarization abnormality leading to slowed conduction. Persistent Na(+) current (I(pNa)) density was decreased in a similar pattern to I(Na). RV transient outward current (I(to)) density was greater than LV in both WT and Scn5a+/-, and had larger time constants of inactivation. These findings were also consistent with the observation that AP durations were smallest in the RV of Scn5a+/-, fulfilling predictions of an increased heterogeneity of repolarization as an additional possible electrophysiological mechanism for arrhythmogenesis in BrS.  相似文献   

10.
Considering the regulatory complexities of progesterone receptor (PR) action throughout the female reproductive axis and mammary gland, we generated a mouse model that enables conditional ablation of PR function in a spatiotemporal specific manner. Exon 2 of the murine PR gene was floxed to generate a conditional PR allele (PRflox) in mice. Crossing the PRflox/flox mouse with the ZP3‐cre transgenic demonstrated that the PRflox allele recombines to a PR null allele (PRd). Mice homozygous for the recombined null PR allele (PRd/d) exhibit uterine, ovarian, and mammary gland defects that phenocopy those of our previously described PR knockout (PRKO) model. Therefore, this conditional mouse model for PR ablation represents an invaluable resource with which to further define in a developmental and/or reproductive stage‐specific manner the individual and integrative roles of distinct PR populations resident in multiple progesterone‐responsive target sites. genesis 48:106–113, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Milk progesterone analysis was used to monitor reproductive function in 134 autumn calving cross-bred suckler cows. Progesterone was measured in milk samples collected three times per week from around 4 week post-calving to around day 60 of pregnancy during 1st and 2nd lactation. The mean day of onset of luteal activity (OLA) was 40.7 +/- 1.1 with the distribution skewed towards a later return. Once cyclicity had been initiated the incidence of reproductive cycle problems (6.5%) was low, though animals with such problems (n = 14) exhibited a delayed interval to first service (P < 0.05), lower conception and calving rates (P < 0.001), increased services per pregnancy (P < 0.001) and a higher (P < 0.10) barren rate (14.3% versus 4.0%) compared to animals with normal cycles (n = 201). In conclusion, using milk progesterone analysis we found a relatively low incidence of reproductive cycle problems in beefxdairy suckler cows. However, while the incidence of cycle problems was low, those animals with problems showed significantly impaired reproductive function.  相似文献   

12.
First revealed in cancer studies, HURP (hepatoma up-regulated protein) is a cell cycle-associated gene with elevated expression in the G(2)/M phase. Cell culture studies have revealed that HURP is an essential factor required for spindle formation and chromosome congression during mitosis. However, the function of HURP in an in vivo context has not been explored. We generated a Hurp knock-out (Hurp(-/-)) mouse to investigate the role of HURP in development under normal physiological conditions. Hurp(-/-) mice develop normally and are indistinguishable from their wild-type littermates. Interestingly, breeding experiments revealed that Hurp(-/-) females are completely infertile, whereas the males reproduce normally. Ovulation, fertilization, and pre-implantation embryo development are normal; however, the Hurp(-/-) females are unable to form implantation sites due to an inability to undergo the decidual reaction. This is caused by a defect in endometrial stromal proliferation that leads to implantation failure. Additionally, HURP expression in the uterus coincides with the implantation stage and can be induced by estrogen treatment. Our results demonstrate for the first time that HURP affects endometrial stromal proliferation during implantation but is dispensable during normal development in mice; specifically, HURP has an essential function in uterine biology.  相似文献   

13.
The P2X7 receptor is an ATP-gated cation channel expressed by a number of cell types. We have shown previously that disruption of P2X7 receptor function results in downregulation of osteogenic markers and upregulation of adipogenic markers in calvarial cell cultures. In the present study, we assessed whether loss of P2X7 receptor function results in changes to adipocyte distribution and lipid accumulation in vivo. Male P2X7 loss-of-function (KO) mice exhibited significantly greater body weight and epididymal fat pad mass than wild-type (WT) mice at 9 months of age. Fat pad adipocytes did not differ in size, consistent with adipocyte hyperplasia rather than hypertrophy. Histological examination revealed ectopic lipid accumulation in the form of adipocytes and/or lipid droplets in several non-adipose tissues of older male KO mice (9–12 months of age). Ectopic lipid was observed in kidney, extraorbital lacrimal gland and pancreas, but not in liver, heart or skeletal muscle. Specifically, lacrimal gland and pancreas from 12-month-old male KO mice had greater numbers of adipocytes in perivascular, periductal and acinar regions. As well, lipid droplets accumulated in the renal tubular epithelium and lacrimal acinar cells. Blood plasma analyses revealed diminished total cholesterol levels in 9- and 12-month-old male KO mice compared with WT controls. Interestingly, no differences were observed in female mice. Moreover, there were no significant differences in food consumption between male KO and WT mice. Taken together, these data establish novel in vivo roles for the P2X7 receptor in regulating adipogenesis and lipid metabolism in an age- and sex-dependent manner.  相似文献   

14.
Genetic and biochemical analyses show that IL-23p19 plays a central role in mediating bacteria-induced colitis in interleukin-10-deficient (IL-10(-/-)) mice. The molecular mechanisms responsible for the dysregulated innate host response leading to enhanced IL-23 gene expression in IL-10(-/-) mice are poorly understood. In this study, we investigated the role of Bcl3 in controlling LPS-induced IL-23p19 gene expression in bone marrow-derived dendritic cells (BMDC) isolated from IL-10(-/-) mice. We report higher IL-23p19 mRNA accumulation and protein secretion in LPS-stimulated BMDC isolated from IL-10(-/-) compared with WT mice. Lipopolysaccharide (LPS)-induced B cell leukemia 3 (Bcl3) expression was strongly impaired (90% decrease) in IL-10(-/-) BMDC compared with WT BMDC. Chromatin immunoprecipitation demonstrated enhanced RelA binding to the IL-23p19 promoter in IL-10(-/-) compared with WT BMDC. Bcl3 overexpression decreased LPS-induced IL-23p19 gene expression in IL-10(-/-) BMDC, which correlated with enhanced NF-kappaB p50 binding and decreased RelA binding to the gene promoter. Conversely, Bcl3 knockdown enhanced LPS-induced IL-23p19 gene expression in WT BMDC. Moreover, LPS-induced IL-23p19 gene expression was significantly enhanced in Bcl3(-/-) BMDC compared with WT BMDC. In conclusion, enhanced LPS-induced IL-23p19 gene expression in IL-10(-/-) mice is due to impaired Bcl3 expression leading to diminished p50 and enhanced RelA recruitment to the IL-23p19 promoter.  相似文献   

15.
Vasoactive intestinal peptide (VIP) facilitates a “pro-allergy” phenotype when signaling through its G protein-coupled receptor, VPAC2. We have shown that VPAC2 knock-out (KO) mice developed an allergic phenotype marked by eosinophilia and elevated serum IgE. Therefore, we hypothesized that the humoral response to allergen challenge in these mice was TH2 dominant similar to wild-type (WT) C57BL/6 mice. Antibody responses in WT and KO mice were measured after Aspergillus fumigatus conidia inhalation. In contrast to previous reports, basal levels of serum IgG2a and IgA were significantly higher in naïve VPAC2 KO animals. Antibody availability in the serum as well as the bronchoalveolar lavage fluid after fungal challenge was dominated by the pro-inflammatory isotype IgG2a and the mucosal isotype, IgA. IgA localizing cells dominated in the peribronchovascular areas of allergic KO mice while IgE immune complexes were found in WT allergic lungs. This research shows for the first time that VPAC2 has a significant effect on antibody regulation, in the context of allergy.  相似文献   

16.
17.
18.
A simple method for extracting and measuring ovarian steroids in feces is applied to the ovarian cycle, pregnancy, parturition, and period of lactational amenorrhea in Pithecia pithecia. Small amounts of wet, unmixed feces were combined with a modified phosphate buffer, shaken, centrifuged, and decanted, and the supernatant was directly measured for estrogen and progesterone metabolites by enzyme immunoassays. Urinary estrogen and progesterone metabolite measurements were compared to paired fecal measurements to determine the degree to which fecal hormone levels detected the same ovarian events as urinary measurements. The correlation coefficients for the relationship between urinary and fecal hormones for individual animals studied (n = 5) were found to be statistically significant in every case except one sexually immature animal. The application of the method presented here demonstrates that simple solubilization and non-radiometric measurement of ovarian steroids excreted in feces reliably reflect reproductive events in Pithecia pithecia. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The ErbB-1 tyrosine kinase receptor plays critical roles in regulating physiological functions. This receptor-mediated signaling in astroglia has been implicated in controlling female sexual development via activating neurons that release LH-releasing hormone (LHRH), the neuropeptide required for the secretion of LH. It remains unknown whether astroglial ErbB-1 receptors are necessary for maintaining normal adult reproductive function. Here we provide genetic evidence that astroglia-specific and time-controlled disruption of ErbB-1 receptor signaling by expressing mutant ErbB-1 receptors leads to compromised reproduction due to alteration in LHRH neuron-controlled secretion of LH in adult female mice. Therefore, astroglial ErbB-1 receptors are required for controlling LHRH neuronal function and thus maintaining adult reproduction, suggesting that compromised astroglial ErbB-1 signaling may also contribute to reproductive abnormalities in aging females.  相似文献   

20.
The protein tyrosine kinase Pyk2 is highly expressed in osteoclasts, where it is primarily localized in podosomes. Deletion of Pyk2 in mice leads to mild osteopetrosis due to impairment in osteoclast function. Pyk2-null osteoclasts were unable to transform podosome clusters into a podosome belt at the cell periphery; instead of a sealing zone only small actin rings were formed, resulting in impaired bone resorption. Furthermore, in Pyk2-null osteoclasts, Rho activity was enhanced while microtubule acetylation and stability were significantly reduced. Rescue experiments by ectopic expression of wild-type or a variety of Pyk2 mutants in osteoclasts from Pyk2(-/-) mice have shown that the FAT domain of Pyk2 is essential for podosome belt and sealing zone formation as well as for bone resorption. These experiments underscore an important role of Pyk2 in microtubule-dependent podosome organization, bone resorption, and other osteoclast functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号