首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A response surface approach has been used to study the production of an extracellular lipase from Aspergillus carneus, which has the property of immense industrial importance. Interactions were studied for five different variables (sunflower oil, glucose, peptone, agitation rate and incubation period), which were found influential for lipase production by one-at a time method. We report a 1.8-fold increase in production, with the final yield of 12.7 IU/ml in comparison to 7.2 U/ml obtained by one-at-a-time method. Using the statistical approach (response surface methodology (RSM)) the optimum values of these most influential parameters were as follows: sunflower oil (1%), glucose (0.8%), peptone (0.8%), agitation rate (200 rpm) and incubation period (96 h) at 37 °C. The subsequent verification experiment confirmed the validity of the model.  相似文献   

2.
Thermomyces lanuginosus, isolated from self-heated jute stacks in Bangladesh, was studied for production of high level of cellulase-free thermostable xylanase at 50°C using xylan. Optimization of the medium composition was carried out on shake-flask level using Graeco-Latin square technique. This increased xylanase production from 527 nkat ml−1 in the original medium to 9168–9502 nkat ml−1 in the optimized medium under optimized culture conditions e.g. initial medium pH (6.0–6.5), culture temperature (50°C) and time (5–6 d). The lag phase was very much shorter in the laboratory reactor compared to which existed in the shake cultures and 7111 nkat of xylanase activity were obtained per ml of culture filtrate at 60 h of cultivation. With a 15 min reaction time, the optimal pH and temperature for the xylanase activity were at 6.5 and 65°C, respectively. The enzyme was almost stable over a broad range of pH 3–9 at 20°C, with an optimum stability at pH 6.5. After 51 h heating at 50°C the enzyme retained 60%, 100% and 90% activity at pH 5.0, 6.5 and 8.0, respectively. The crude enzyme could hydrolyse xylan effectively and in only 6 h 67.3%, 54.0% and 49.2% saccharifications were achieved for 2%, 5% and 10% substrate levels, respectively. The principal product of hydrolysis was xylobiose together with smaller amounts of xylooligosaccharides (degree of polymerization 3–7) and xylose.  相似文献   

3.
Medium composition and culture conditions for the xylanases production by Bacillus mojavensis A21 were optimized using two statistical methods: Plackett-Burman design applied to find the key ingredients and conditions for the best yield of enzyme production and Box-Behnken design used to optimize the value of the four significant variables: barley bran, NaCl, agitation, and cultivation time. The optimal conditions for higher production of xylanases were barley bran 18.66g/l, NaCl 1.04g/l, speed of agitation 176rpm and cultivation time 34.08h. Under these conditions, the xylanase experimental yield (7.45U/ml) closely matched the yield predicted by the statistical model (7.23U/ml) with R(2)=0.98. The medium optimization resulted in a 6.83-fold increase in xylanase production compared to that of the initial medium. Best xylanase activity was observed at the temperature of 50°C and at pH 8.0. The enzyme retained more 96% of its activity after 24h at pH ranges from 7.0 to 90.0. The enzyme preserved more 80% of its initial activity after 60min of pre-incubation from 30°C to 60°C. The main hydrolysis products yielded from corncob extracted xylan were xylobiose and xylotriose, suggesting the good potential of strain A21 in xylooligosaccharides production.  相似文献   

4.
Characteristics of galactomannanase for degrading konjac gel   总被引:2,自引:0,他引:2  
Galactomannanase (Glmnase) is an enzyme product derived from Aspergillus niger. The activity of Glmnase degrading (hydrolyzing) the konjac gel were investigated. Significant loss in the enzyme activity was found when the temperature above 60 °C. Similar observations were obtained when the reaction pH above 5. Further increase in the pH value resulted in entirely loss of enzyme activity at the alkaline pH region (pH 8.0 and above). The optimal hydrolyzing temperature and pH were at 60 °C and 5.0, respectively. For the stability test, the purified Glmnase increased its thermostability up to 70 °C at pH 5.0, but it retained only about 60% activity after 60 min incubation at this temperature and its activity became zero after 20 min incubation at 80 °C. The Glmnase was stable at the pH range from 3.0 to 7.0 at room temperature and retained at least 80% activity for 60 min. For the storage temperature test, the lyophilized Glmnase still conserved about 90% activity during 7 days at 30 °C, and was higher than about 80% at 4 °C. The Km and Vmax, were 0.018 mg/ml konjac powder and 0.20 mg/ml reducing sugar per min, respectively.  相似文献   

5.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

6.
An extracellular protease was produced under stress conditions of high temperature and high salinity by a newly isolated moderate halophile, Salinivibrio sp. strain AF-2004 in a basal medium containing peptone, beef extract, glucose and NaCl. A modification of Kunitz method was used for protease assay. The isolate was capable of producing protease in the presence of sodium chloride, sodium sulfate, sodium nitrate, sodium nitrite, potassium chloride, sodium acetate and sodium citrate. The maximum protease was secreted in the presence of 7.5 to 10% (w/v) sodium sulfate or 3% (w/v) sodium acetate (4.6 U ml−1). Various carbon sources including glucose, lactose, casein and peptone were capable of inducing enzyme production. The optimum pH, temperature and aeration for enzyme production were 9.0, 32 °C and 220 rpm, respectively. The enzyme production corresponded with growth and reached a maximum level during the mid-stationary phase. Maximum protease activity was exhibited in the medium containing 1% (w/v) NaCl at 60 °C, with 18% and 41% activity reductions at temperature 50 and 70 °C, respectively. The optimum pH for enzyme activity was 8.5, with 86% and 75% residual activities at pH 10 and 6, respectively. The activity of enzyme was inhibited by EDTA. These results suggest that the protease secreted by Salinivibrio sp. strain AF-2004 is industrially important from the perspectives of its activity at a broad pH ranges (5.0–10.0), its moderate thermoactivity in addition to its high tolerance to a wide range of salt concentration (0–10% NaCl).  相似文献   

7.
The objective of this work was to apply low cost materials, agricultural residues, to the purification of xylanase. The results showed that crude extracellular, cellulase-free xylanase of an alkaliphilic Bacillus sp. strain K-8 could be purified in a single step by affinity adsorption–desorption on a corn husk column using a high flow rate, under the conditions 25 mM acetate buffer, pH 4.0, 4 °C, which prevented the hydrolysis of xylan by xylanase. After adsorption, the xylanase was eluted from the enzyme–corn husk complex with 500 mM Urea. The enzyme was purified 5.3-fold to homogeneity from culture supernatant. The molecular weight of the purified enzyme was 24 kDa as determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The specific activity and recovery yield after purification were 25.4 U/mg protein and 42.3%, respectively.  相似文献   

8.
Cultivation of the fungus Penicillium janthinellum for xylanase production was studied in a poly(ethylene glycol)/cashew-nut tree gum aqueous two-phase system, using a two-level fractional factorial design. The parameters studied were initial pH, cultivation time, type of agro-industrial residue (oat husk or corn cob), agitation, temperature, and phase-forming polymers. The xylanase produced during fermentation partitioned into the top phase. The agitation and temperature (negative), cultivation time and initial pH (positive) effects proved statistically significant for xylanase production. The highest percentage yield of the xylanase in the top and its production in the top phase, about 97% and 160.7 U/mL, were obtained in cultures of 120 h, 40 rpm, 25 degrees C, and pH 5.0.  相似文献   

9.
Fourteen Penicillium strains have been screened on wheat bran–crude chitin mixture medium for extracellular chitinase production in solid-state fermentation. Under the experimental conditions tested, Penicillium aculeatum NRRL 2129 (=ATCC 10409) was selected as the best enzyme producer. The optimum incubation period for chitinase production by the potent organism was found to be 72 h. Chromatofocusing was performed as the first step in the purification scheme, but high amount of contaminating proteins interfered with the method. Hence, ion-exchange chromatography experiments were carried out followed by gel filtration to separate and isolate chitinase isoenzymes. Four major chitinase peaks of molecular weight 82.7, 44.6, 28.2 and 26.9 kDa were observed after gel filtration chromatography while, on SDS-PAGE, three protein bands of molecular weights 82.6, 33.9 and 29.1 kDa were identified. The purified enzyme showed optimal temperature and pH at 50 and 5.5 °C, respectively.  相似文献   

10.
A tandem repeat of the family VI cellulose binding domain (CBD) from Clostridium stercorarium xylanase (XylA) was fused at the carboxyl-terminus of Bacillus halodurans xylanase (XylA). B. halodurans XylA is an enzyme which is active in the alkaline region of pH and lacks a CBD. The constructed chimera was expressed in Escherichia coli, purified to homogeneity, and then subjected to detailed characterization. The chimeric enzyme displayed pH activity and stability profiles similar to those of the parental enzyme. The optimal temperature of the chimera was observed at 60 °C and the enzyme was stable up to 50 °C. Binding studies with insoluble polysaccharides indicated that the chimera had acquired an increased affinity for oat spelt xylan and acid-swollen cellulose. The bound chimeric enzyme was desorbed from insoluble substrates with sugars and soluble polysaccharides, indicating that the CBDs also possess an affinity for soluble sugars. Overall, the chimera displayed a higher level of hydrolytic activity toward insoluble oat spelt xylan than its parental enzyme and a similar level of activity toward soluble xylan.  相似文献   

11.
A novel crude glycyrrhizin (GL) hydrolase preparation from the liver of domestic duck was used to produce glycyrrhetic acid monoglucuronide. To characterize the biocatalytic profiles of the crude enzyme, some effect factors were investigated. It had an apparent optimal pH of 6.0 and an optimal temperature at 55 °C. Most of the metal ions tested and ethylene diamine tetra acetic acid showed little effect on the crude enzyme activity except Cu2+. The enzyme was stable only at pH 6. It was more prone to inactivity at high pH conditions than at low pH conditions. It was stable at temperatures below 55 °C and it will lost 90% GL hydrolytic activity exposed at 70 °C. GL hydrolytic activity declined by 30% compared with the control in aqueous solution (buffer pH 6.0) when pre-equilibrated at 55 °C for 5 days. It indicated that the novel crude GL hydrolase preparation had good biocatalytic ability for selective hydrolysis of one glucuronic acid from GL.  相似文献   

12.
A thermostable, alkaline active xylanase was purified to homogeneity from the culture supernatant of an alkaliphilic Bacillus halodurans S7, which was isolated from a soda lake in the Ethiopian Rift Valley. The molecular weight and the pI of this enzyme were estimated to be around 43 kDa and 4.5, respectively. When assayed at 70 °C, it was optimally active at pH 9.0–9.5. The optimum temperature for the activity was 75 °C at pH 9 and 70 °C at pH 10. The enzyme was stable over a broad pH range and showed good thermal stability when incubated at 65 °C in pH 9 buffer. The enzyme activity was strongly inhibited by Mn2+. Partial inhibition was also observed in the presence of 5 mM Cu2+, Co2+ and EDTA. Inhibition by Hg2+ and dithiothreitol was insignificant. The enzyme was free from cellulase activity and degraded xylan in an endo-fashion.  相似文献   

13.
The enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid was investigated in 53 Rhodococcus and Pseudomonas related strains. Rhodococcus erythropolis ATCC 25544 was selected as it showed the highest enantioselectivity. The enantioselectivity was due to the amidase activity in a two-step reaction involving nitrile hydratase. The enantiomeric excess of the amidase was highest at pH 7.0 and decreased significantly above 20 °C. For the enantioselective production of (S)-2,2-dimethylcyclopropane carboxylic acid, the optimum reaction conditions of the cells were determined to be pH 7.0, 20 °C, and 10% (v/v) methanol and were the same as the optimum pH and temperature for the enantioselective conversion by the amidase. Under these conditions, the R. erythropolis ATCC 25544 cells, which harbored nitrile hydratase and amidase enzymes, produced 45 mM (S)-2,2-dimethylcyclopropane carboxylic acid from racemic 100 mM 2,2-dimethylcyclopropane carbonitrile with an 81.8% enantiomeric excess after 64 h.  相似文献   

14.
A novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86 was purified to homogeneity by ammonium sulfate precipitation and Sephacryl S-300 gel filtration chromatography. The purified xylanosome appeared as a single protein band on the non-denaturing (native) polyacrylamide gel electrophoresis (PAGE) gel with a molecular mass of approximately 1200 kDa. The optimal temperature and pH for xylanase activity was 60 °C and pH 6.0, respectively. The xylanase activity was stable within pH 4.1–10.3. It was stable up to 60 °C at pH 6.0. The xylanosome was highly specific towards oat-spelt xylan, and showed low activity towards corncob powder, but exhibited very low activity towards lichenan, CMC and p-nitrophenyl derivatives. Apparent Km values of the xylansosome for birchwood, beechwood, soluble oat-spelt and insoluble oat-spelt xylans were 2.5, 3.6, 1.7 and 4.9 mg ml−1, respectively. The main hydrolysis products of birchwood xylan were xylotriose, xylobiose and xylose. Analysis of the products from wheat arabinoxylan degradation by xylanosome confirmed that the enzyme had endoxylanase and debranching activities, with xylotriose, xylobiose, xylose and arabinose as the main degradation products. These unique properties of the purified xylanosome from Streptomyces olivaceoviridis E-86 make this enzymatic complex attractive for biotechnological applications.  相似文献   

15.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

16.
A novel approach to utilize deproteinated cheese whey by cultivating mycelia of the edible mushroom Ganoderma lucidum is described. A central composite in cube design for the experiments was used to develop empirical models providing a quantitative interpretation of the relationships between the two variables studied, which were pH and temperature. The designed intervals were 3.3removed, was calculated as pH 4.2, and 28.5 °C soluble COD; which was almost the same as optimum condition for mycelial production. The high extract ratio of 10.7% (i.e. 1820 mg extract/17 057 mg mycelium) as well as high content of polysaccharide (i.e. 1.12 g/l) indicated that the deproteinated whey could be an alternative substrate for mycelial production. Therefore, cultivation of G. lucidum mycelia can offer a potential cost-effective solution for an alternative utilization of the deproteinated cheese whey.  相似文献   

17.
The effect of the temperature of growth and carbon source on the production and secretion of β-xylosidase (EC 3.2.1.37) by the thermotolerant fungi Aspergillus fumigatus was studied in submerged cultures. In cultures developed at optimal temperature (30 °C), the enzyme was predominantly cell-bound, while in cultures developed at higher temperature (42 °C), the β-xylosidase activity was predominantly found in the cell-free filtrates. The use of corn cob powder instead of xylan as substrate increased considerably the secretion of enzyme. The highest level of extracellular β-xylosidase (45 U/ml or 360 U/mg protein) was obtained in 3% corn cob cultures grown at 42 °C for 72 h. The partially purified enzyme was active and stable at high temperatures. The presence of high titres of β-xylosidase activity in association with xylanase in the culture filtrates enhanced the efficiency of the pulp hydrolysis process.  相似文献   

18.
An artificial bifunctional enzyme, xylanase–cellulase, has been prepared by gene fusion. Three chimeric genes were constructed that encoded fusion proteins of different lengths. The fusion proteins exhibited both xylanase (XynX) and cellulase (Cel5Z::Ω) activity when cel5Z::Ω was fused downstream of xynX, but not when xynX was fused downstream of cel5Z::Ω. Activities of bifunctional enzymes decreased when a shorter xylanase peptide was fused. Three fusion enzymes were purified, and the molecular weights of the enzymes were estimated by CMC-SDS-PAGE and XYN-SDS-PAGE to be 149, 129, and 87 kDa, respectively. The fusion enzymes displayed optimum cellulase activity at pH 8.0 and 50 °C and optimum xylanase activity at pH 8.0 and 70 °C.  相似文献   

19.
Summary Three strains of Geotrichum candidum (ATCC 34614, NRRL Y-552 and NRRL Y-553) were examined for lipase production and activity. Variables including medium, pH, temperature, agitation rate and incubation time were examined to define the optimal culture conditions. Growth on oil in complex medium at 30°C, 300 rpm, and pH 7 produced maximal lipase activity. Fatty acid specificity of these strains and of two crude G. candidum enzyme preparations (lipase 26557 RP, Rhône Poulenc and lipase GC-4, Amano) was measured using equimolar mixtures of methyl or butyl esters of palmitic and oleic acids. The lipase from NRRL Y-553 and lipase 26557 RP displayed preferential specificity for hydrolyzing oleic acid esters, while the lipases from ATCC 34614, NRRL Y-552 and lipase GC-4 failed to discriminate between plamitic and oleic acids.  相似文献   

20.
Two enzymatic extracts obtained from xylan-grown Aspergillus terreus CCMI 498 and cellulose-grown Trichoderma viride CCMI 84 were characterised for different glycanase activities. Both strains produce extracellular endoxylanase and endoglucanase enzymes. The enzymes optimal activity was found in the temperature range of 45–60 °C. Endoglucanase systems show identical activity profiles towards temperature, regardless of the strain and inducing substrate. Conversely, the endoxylanases produced by both strains showed maximal activity at different pH values (from 4.5 to 5.5), being the more acidic xylanase produced by T. viride grown on cellulose. The endoglucanase activities have an optimum pH at 4.5–5.0. The endoxylanase and endoglucanase activities exhibited high stability at 50 °C and pH 5.0. Mannanase, β-xylosidase, and amylase activities were also found, being the first two activities only present for T. viride extract. These two enzymatic extracts were used for mixed office wastepaper (MOW) deinking. When the enzymatic extract from T. viride was used, a further increase of 24% in ink removal was obtained by comparison with the control. Both enzymes contributed to the improvement of the paper strength properties and the obtained results clearly indicate that the effective use of enzymes for deinking can also contribute to the pulp and paper properties improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号