首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between fungi and bacteria and their relevance to human health and disease have recently attracted increased attention in biomedical fields. Emerging evidence shows that bacteria and fungi can have synergistic or antagonistic interactions, each with important implications for human colonization and disease. It is now appreciated that some of these interactions may be strategic and helps promote the survival of one or both microorganisms within the host. This review will shed light on clinically relevant interactions between fungi and Gram‐negative bacteria. Mechanism of interaction, host immune responses, and preventive measures will also be reviewed.  相似文献   

2.
人体内定植着数目庞大、结构复杂的细菌及真菌等微生物群,它们之间存在复杂的相互作用。既往研究主要集中于细菌或真菌的某个单一物种,但最近研究表明,细菌与真菌之间的相互作用对更好地理解体内的微生态系统至关重要。白假丝酵母(又称白念珠菌)是人备体中最常见的机会性致病真菌,通常被认为是人类正常菌群的一部分。白念珠菌与细菌的相互作用近年来备受关注,其协同和拮抗作用有助于维持不同物种间复杂的平衡关系。了解白念珠菌与细菌的相互作用,不仅可加深对微生物致病机制的理解,还可为预防和治疗白念珠菌或细菌感染及新型抗菌药物研发提供新途径。本文就白念珠菌与细菌共存时的相互作用机制及其对人类健康、疾病的影响进行综述,从而为控制念珠菌或细菌感染提供新的策略。  相似文献   

3.
Interactions between pathogenic microorganisms and their hosts are varied and complex, encompassing open-field scale interactions to interactions at the molecular level. The capacity of plant pathogenic bacteria and fungi to cause diseases in human and animal systems was, until recently, considered of minor importance. However, recent evidence suggests that animal and human infections caused by plant pathogenic fungi, bacteria and viruses may have critical impacts on human and animal health and safety. This review analyses previous research on plant pathogens as causal factors of animal illness. In addition, a case study involving disruption of type III effector-mediated phagocytosis in a human cell line upon infection with an opportunistic phytopathogen, Pseudomonas syringae pv. tomato, is discussed. Further knowledge regarding the molecular interactions between plant pathogens and human and animal hosts is needed to understand the extent of disease incidence and determine mechanisms for disease prevention.  相似文献   

4.
《Fungal biology》2023,127(5):1005-1009
Research on bacterial-fungal interactions (BFIs) has revealed that fungi and bacteria frequently interact with one another within diverse ecosystems and microbiomes. Assessing the current state of knowledge within the field of BFI research, particularly with respect to what interactions between bacteria and fungi have been previously described, is very challenging and time consuming. This is largely due to a lack of any centralized resource, with reports of BFIs being spread across publications in numerous journals using non-standardized text to describe the relationships. To address this issue, we have developed the BFI Research Portal, a publicly accessible database of previously reported interactions between bacterial and fungal taxa to serve as a centralized resource for the field. Users can query bacterial or fungal taxa to see what members from the other kingdom have been observed as interaction partners. Search results are accompanied by interactive and intuitive visual outputs, and the database is a dynamic resource that will be updated as new BFIs are reported.  相似文献   

5.
Symbiotic interactions between insects and bacteria have long fascinated ecologists. Aphids have emerged as the model system on which to study the effect of endosymbiotic bacteria on their hosts. Aphid‐symbiont interactions are ecologically interesting as aphids host multiple secondary symbionts that can provide broad benefits, such as protection against heat stress or specialist natural enemies (parasitic wasps and entomopathogenic fungi). There are nine common aphid secondary symbionts and individual aphids host on average 1–2 symbionts. A cost‐benefit trade‐off for hosting symbionts is thought to explain why not all aphids host every possible symbiont in a population. Both positive and negative associations between various symbionts occur, and this could happen due to increased costs when cohosting certain combinations or as a consequence of competitive interactions between the symbionts within a host. In this issue of Molecular Ecology, Mathé‐Hubert, Kaech, Hertaeg, Jaenike, and Vorburger (2019) use data on the symbiont status of field‐collected aphids to inform a model on the evolution of symbiont co‐occurrence. They vary the effective female population size as well as the rate of horizontal and maternal transmission to infer the relative impact of symbiont‐symbiont interactions versus random drift. Additional data analysis revisits an association between two symbionts in a fruit fly species using a long‐term data set to highlight that such interactions are not limited to aphids.  相似文献   

6.
Quorum sensing was once considered a way in which a species was able to sense its cell density and regulate gene expression accordingly. However, it is now becoming apparent that multiple microbes can sense particular quorum‐sensing molecules, enabling them to sense and respond to other microbes in their neighbourhood. Such interactions are significant within the context of polymicrobial disease, in which the competition or cooperation of microbes can alter disease progression. Fungi comprise a small but important component of the human microbiome and are in constant contact with bacteria and viruses. The discovery of quorum‐sensing pathways in fungi has led to the characterization of a number of interkingdom quorum‐sensing interactions. Here, we review the recent developments in quorum sensing in medically important fungi, and the implications these interactions have on the host's innate immune response.  相似文献   

7.
8.
The synergies between viral and bacterial infections are well established. Most studies have been focused on the indirect mechanisms underlying this phenomenon, including immune modulation and alterations to the mucosal structures that promote pathogen outgrowth. A growing body of evidence implicates direct binding of virus to bacterial surfaces being an additional mechanism of synergy at the host–pathogen interface. These cross‐kingdom interactions enhance bacterial and viral adhesion and can alter tissue tropism. These bacterial–viral complexes play unique roles in pathogenesis and can alter virulence potential. The bacterial–viral complexes may also play important roles in pathogen transmission. Additionally, the complexes are recognized by the host immune system in a distinct manner, thus presenting novel routes for vaccine development. These synergies are active for multiple species in both the respiratory and gastrointestinal tract, indicating that direct interactions between bacteria and virus to modulate host interactions are used by a diverse array of species.  相似文献   

9.
Bacteria and fungi often share a common substrate, and their spatial proximity in many environments has lead to either synergistic or antagonistic interactions. In this paper, the interaction of bacterial and fungal decomposers from an aquatic environment was studied. We found indications of a tradeoff between fungal growth and tolerance towards bacteria. Fungal strains growing best in absence of bacteria were most severely affected by bacterial presence, while those less suppressed during co-existence with bacteria had lower maximal growth rates in bacterial absence. Additionally, we show that the antagonism between bacteria and fungi is connected to competition for substrate, but that this competition can be drastically altered if fungi are given an opportunity to establish before inoculation of bacteria. Established fungi out-competed bacteria, and gained higher biomass than in simultaneously inoculated treatments with higher substrate concentrations.  相似文献   

10.
Histidine kinases (HK) sense and transduce via phosphorylation events many intra‐ and extracellular signals in bacteria, archaea, slime moulds and plants. HK are also widespread in the fungal kingdom, but their precise roles in the regulation of physiological processes remain largely obscure. Expanding genomic resources have recently given the opportunity to identify uncharacterised HK family members in yeasts and moulds and now allow proposing a complex classification of Basidiomycota, Ascomycota and lower fungi HK. A growing number of genetic approaches have progressively provided new insight into the role of several groups of HK in prominent fungal pathogens. In particular, a series of studies have revealed that members of group III HK, which occur in the highest number of fungal species and contain a unique N‐terminus region consisting of multiple HAMP domain repeats, regulate morphogenesis and virulence in various human, plant and insect pathogenic fungi. This research field is further supported by recent shape‐function studies providing clear correlation between structural properties and signalling states in group III HK. Since HK are absent in mammals, these represent interesting fungal target for the discovery of new antifungal drugs.  相似文献   

11.
Aboveground plant performance is strongly influenced by belowground microorganisms, some of which are pathogenic and have negative effects, while others, such as nitrogen‐fixing bacteria and arbuscular mycorrhizal fungi, usually have positive effects. Recent research revealed that belowground interactions between plants and functionally distinct groups of microorganisms cascade up to aboveground plant associates such as herbivores and their natural enemies. However, while functionally distinct belowground microorganisms commonly co‐occur in the rhizosphere, their combined effects, and relative contributions, respectively, on performance of aboveground plant‐associated organisms are virtually unexplored. Here, we scrutinized and disentangled the effects of free‐living nitrogen‐fixing (diazotrophic) bacteria Azotobacter chroococcum (DB) and arbuscular mycorrhizal fungi Glomus mosseae (AMF) on host plant choice and reproduction of the herbivorous two‐spotted spider mite Tetranychus urticae on common bean plants Phaseolus vulgaris. Additionally, we assessed plant growth, and AMF and DB occurrence and density as affected by each other. Both AMF alone and DB alone increased spider mite reproduction to similar levels, as compared to the control, and exerted additive effects under co‐occurrence. These effects were similarly apparent in host plant choice, that is, the mites preferred leaves from plants with both AMF and DB to plants with AMF or DB to plants grown without AMF and DB. DB, which also act as AMF helper bacteria, enhanced root colonization by AMF, whereas AMF did not affect DB abundance. AMF but not DB increased growth of reproductive plant tissue and seed production, respectively. Both AMF and DB increased the biomass of vegetative aboveground plant tissue. Our study breaks new ground in multitrophic belowground–aboveground research by providing first insights into the fitness implications of plant‐mediated interactions between interrelated belowground fungi–bacteria and aboveground herbivores.  相似文献   

12.
互惠共生微生物多样性研究概况   总被引:1,自引:0,他引:1  
所谓互惠共生微生物(mutualistic symbiotic microbes,MSM)是指能定殖其他生物构建互惠共生体系的微生物,主要包括互惠共生细菌、互惠共生放线菌和互惠共生真菌等。MSM种类繁多、分布广泛、物种多样性丰富,涉及原核生物界和真菌界等。MSM定殖人体、动物、植物、藻类或其他真菌,可构建各自相应的互惠共生体系,进而形成范围更加巨大的共生网络,发挥不可替代的生理生态功能。本文在介绍MSM概念的基础上,重点总结了MSM多样性研究进展,指出了目前研究中尚存在的问题,探讨了今后应该开展的工作,MSM多样性研究成果可望为研发MSM应用技术提供依据和材料。  相似文献   

13.
Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases.  相似文献   

14.
Ploch S  Thines M 《Molecular ecology》2011,20(17):3692-3699
Mutualistic interactions of plants with true fungi are a well‐known and widespread phenomenon, which includes mycorrhiza and non‐mycorrhizal endophytes like species of Epichloë. Despite the fact that these organisms intrude into plants, neither strong defence reactions nor the onset of symptoms of disease can be observed in most or even all infested plants, in contrast to endophytic pathogens. Oomycetes are fungal‐like organisms belonging to the kingdom Straminipila, which includes diatoms and seaweeds. Although having evolved many convergent traits with true fungi and occupying similar evolutionary niches, widespread oomycete endophytes are not known to date, although more than 500 endophytic pathogens, including species of the obligate biotrophic genus Albugo, have been described. Here, we report that oomycetes of the genus Albugo are widespread in siliques of natural host populations. A total of 759 plants, encompassing four genera with rare reports of white blister incidents and one with common incidents, were collected from 25 sites in Germany. Nested PCR with species‐specific primers revealed that 5–27% of the hosts with rare disease incidence carried asymptomatic Albugo in their siliques, although only on a single plant of 583 individuals, an isolated pustule on a single leaf could be observed. Control experiments confirmed that these results were not because of attached spores, but because of endophytic mycelium. Vertical inheritance of oomycete infections has been reported for several plant pathogens, and it seems likely that in nature this way of transmission plays an important role in the persistence of asymptomatic endophytic Albugo species.  相似文献   

15.
Microbial attachment onto biomedical devices and implants leads to biofilm formation and infection; such biofilms can be bacterial, fungal, or mixed. In the past 15 years, there has been an increasing research effort into antimicrobial surfaces but the great majority of these publications present research on bacteria, with some reports also testing resistance to fungi. Very few studies have focused exclusively on antifungal surfaces. However, with increasing recognition of the importance of fungal infections to human health, particularly related to infections at biomaterials, it would seem that the interest in antifungal surfaces is disproportionately low. In studies of both bacteria and fungi, fungi tend to be the minor focus with hypothesized antibacterial mechanisms of action often generalized to also explain the antifungal effect. Yet bacteria and fungi represent two Distinct biological Domains and possess substantially different cellular physiology and structure. Thus it is questionable whether these generalizations are valid. Here we review the scientific literature focusing on surface coatings prepared with antifungal agents covalently attached to the biomaterial surface. We present a critical analysis of generalizations and their evidence. This review should be of interest to researchers of “antimicrobial” surfaces by addressing specific issues that are key to designing and understanding antifungal biomaterials surfaces and their putative mechanisms of action.  相似文献   

16.
Interactions between arbuscular mycorrhizal fungi and soil bacteria   总被引:4,自引:0,他引:4  
The soil environment is interesting and complicated. There are so many interactions taking place in the soil, which determine the properties of soil as a medium for the growth and activities of plants and soil microorganisms. The soil fungi, arbuscular mycorrhiza (AM), are in mutual and beneficial symbiosis with most of the terrestrial plants. AM fungi are continuously interactive with a wide range of soil microorganisms including nonbacterial soil microorganisms, plant growth promoting rhizobacteria, mycorrhiza helper bacteria and deleterious bacteria. Their interactions can have important implications in agriculture. There are some interesting interactions between the AM fungi and soil bacteria including the binding of soil bacteria to the fungal spore, the injection of molecules by bacteria into the fungal spore, the production of volatiles by bacteria and the degradation of fungal cellular wall. Such mechanisms can affect the expression of genes in AM fungi and hence their performance and ecosystem productivity. Hence, consideration of such interactive behavior is of significance. In this review, some of the most important findings regarding the interactions between AM fungi and soil bacteria with some new insights for future research are presented.  相似文献   

17.
Fungi and bacteria co-inhabit a wide variety of environments, from soils and food products to plants and mammals. Interactions between bacteria and fungi can have dramatic effects on the survival, colonization and pathogenesis of these organisms. There are instances where bacteria provide fungi with compounds that enhance the production of fungal virulence determinants. Other bacteria produce factors that are likely to inhibit pathogenesis by repressing fungal filamentation. Furthermore, mixed bacterial-fungal biofilms can have properties that are distinct from their single-species counterparts. Clinical studies, in combination with in vitro model systems, are necessary to understand how bacterial-fungal interactions impact human health.  相似文献   

18.
Exploiting the potential of bacteria in phytoremediation for the removal of organic and inorganic pollutants from soils and (ground)water holds great promise. Besides bacteria, mycorrhizal fungi and free-living saprotrophs are well known for their strong degradative capacities and plant growth promotion effects, which makes them of high interest for use in different bioremediation strategies. To further increase the efficiency and successes of phytoremediation, interactions between plants and their associated microorganisms, both bacteria and fungi, should be further investigated, in addition to the close interactions between bacteria and fungi. Benefitting from an increased understanding of microbial community structure and assembly allows us to better understand how the holobiont can be modified to improve pollutant degradation and plant growth. In this review, we present an overview of insights in plant-bacteria-fungi interactions and the opportunities of exploiting these tripartite interactions to enhance the effectiveness of phytoremediation of organic pollutants.  相似文献   

19.
Eight-carbon volatiles are characteristic of the odour profile of many filamentous fungi. They derive from enzymatic or non-enzymatic lipid oxidation and are thus termed volatile oxylipins. Collectively, non-volatile and volatile fungal oxylipins are important hormone-like factors that regulate the phenotypic status of a fungus, i.e. growth, morphological differentiation and secondary metabolite production. Given this intimate link between oxylipin formation and phenotypic change, we propose that the release of volatile oxylipins is an important means by which fungi may influence the course and outcome of interactions with animals. Such invertebrate – fungus interactions are intricate inter–kingdom relationships where either one depends on the other, or both on each other, where one is to the others benefit or detriment – eventually having even consequences on third parties and thus influencing whole foodwebs. In this review, we first highlight the connections between oxylipin formation and fungal phenotypic changes, how they affect invertebrate interactions and vice versa. We then expand this by implementing eight-carbon volatiles as infochemicals. Infochemicals are cues or signals perceived by the invertebrates' chemical senses, that are to the invertebrates' or the fungus’ benefit or detriment, through the behavioural responses they elicit. We point out, with various examples, that there is a strong analogy between fungus-invertebrate interactions mediated by fungal eight-carbon volatiles and plant-herbivore interactions mediated by six-carbon green-leaf volatiles released from wounded or stressed plants.  相似文献   

20.
Pathogenic bacteria and mutualistic rhizobia are able to invade and establish chronic infections within their host plants. The success of these plant–bacteria interactions requires evasion of the plant innate immunity by either avoiding recognition or by suppressing host defences. The primary plant innate immunity is triggered upon recognition of common microbe-associated molecular patterns. Different studies reveal striking similarities between the molecular bases underlying the perception of rhizobial nodulation factors and microbe-associated molecular patterns from plant pathogens. However, in contrast to general elicitors, nodulation factors can control plant defences when recognized by their cognate legumes. Nevertheless, in response to rhizobial infection, legumes show transient or local defence-like responses suggesting that Rhizobium is perceived as an intruder although the plant immunity is controlled. Whether these responses are involved in limiting the number of infections or whether they are required for the progression of the interaction is not yet clear. Further similarities in both plant–pathogen and Rhizobium –legume associations are factors such as surface polysaccharides, quorum sensing signals and secreted proteins, which play important roles in modulating plant defence responses and determining the outcome of the interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号