首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Simultaneous Recording of Input and Output of Lateral Geniculate Neurones   总被引:3,自引:0,他引:3  
TO understand the way in which the cat dorsal lateral geniculate nucleus (LGN) processes visual information it would be useful to know the number and type of retinal inputs to individual LGN neurones. Using electrical stimulation of the optic nerve Bishop et al.1concluded that an impulse in a single optic nerve fibre is sufficient to excite a single LGN neurone. From the appearance of excitatory postsynaptic potentials (EPSPs) recorded essentially intracellularly, Creutzfeldt suggested that LGN neurones are driven by perhaps one2 or a few3 retinal ganglion cells. Hubel and Wiesel4 proposed models of convergence of several retinal inputs on single LGN neurones based on analyses of receptive fields. Guillery5 produced anatomical evidence that some types of LGN neurones receive inputs from several different retinal fibres. Now we report direct observations which were made by recording simultaneously from single LGN neurones and from individual retinal ganglion cells which provided excitatory input to them. We shall not consider inhibitory influences, which are currently under study.  相似文献   

2.
A prolonged increase in the activity of preganglionic sympathetic nerves produces characteristic changes in the enzyme pattern of the postganglionic adrenergic neurones in adult rats1–4. In newborn mice the normal development of adrenergic neurones depends materially on the intactness of the preganglionic cholinergic nerves5. These two findings contribute to the definition of the so far vague term “trophic response to neuronal activity” and the question arises whether these trophic actions are unidirectional only, or whether there is also a retrograde effect, that is, a dependence of the preganglionic cholinergic nerves on the function of the postjunctional adrenergic neurones. Transection experiments in the brain have shown that after lesioning of particular areas, for example, optic nerve tract, cingulate or visual cortex, there occurs not only orthograde but also retrograde trans-synaptic degeneration6. It seemed of interest to study this possible retrograde trophic effect in a less complex system and to investigate whether there are not only negative (degeneration) but also positive effects. The administration of nerve growth factor (NGF) to newborn rats produces a marked growth and enhanced differentiation of the adrenergic neurones7. The biochemical correlate to these morphological changes is a selective induction of tyrosine hydroxylase and dopamine β-hydroxylase8. We have investigated whether these effects are also reflected by changes in the preganglionic nerves.  相似文献   

3.
The LGMD2 belongs to a group of giant movement-detecting neurones which have fan-shaped arbors in the lobula of the locust optic lobe and respond to movements of objects. One of these neurones, the LGMD1, has been shown to respond directionally to movements of objects in depth, generating vigorous, maintained spike discharges during object approach. Here we compare the responses of the LGMD2 neurone with those of the LGMD1 to simulated movements of objects in depth and examine different image cues which could allow the LGMD2 to distinguish approaching from receding objects. In the absence of stimulation, the LGMD2 has a resting discharge of 10–40 spikes s−1 compared with <1 spike s−1 for the LGMD1. The most powerful excitatory stimulus for the LGMD2 is a dark object approaching the eye. Responses to approaching objects are suppressed by wide field movements of the background. Unlike the LGMD1, the LGMD2 is not excited by the approach of light objects; it specifically responds to movement of edges in the light to dark direction. Both neurones rely on the same monocular image cues to distinguish approaching from receding objects: an increase in the velocity with which edges of images travel over the eye; and an increase in the extent of edges in the image during approach. Accepted: 23 October 1996  相似文献   

4.
The occurrence of salt‐, sugar‐sensitive neurones and a mechanoreceptor neurone in the antennal hair‐like gustatory sensilla of the click beetle Agriotes obscurus L. (Coleoptera, Elateridae) is demonstrated using the electrophysiological sensillum tip‐recording technique. The stimulating effect of 13 water soluble sugars at 100 mm is tested on the neurones of these sensilla. Sucrose and fructose are the two most stimulating sugars for the sugar‐sensitive neurone, evoking almost 30 spikes s?1 at 100 mm . The stimulating effect of arabinose, glucose, mannose, maltose and raffinose is three‐ to five‐fold lower, in the range 5.9–9.6 spikes s?1. The remaining six sugars, xylose, galactose, rhamnose, cellobiose, trehalose and lactose, have very low (<1 spikes s?1) or no ability to stimulate the sugar‐sensitive neurone. Concentration/response curves of the sugar‐sensitive neurone to sucrose, fructose and glucose at 0.01–100 mm overlap to a large extent in hibernating, cold reactivated and reproductively‐active beetles. A remarkable 9–50% decrease in the number of spikes evoked by 100 mm fructose and 10–100 mm sucrose occurs, however, in reproductively‐active beetles in June compared with beetles at the beginning of hibernation in October. These findings show that A. obscurus is capable of sensing a wide range sugars via their antennal gustatory sensilla.  相似文献   

5.
SEVERAL chemical substances are involved in synaptic transmission in the mammalian central nervous system1–3. The Falck-Hillarp technique4 has demonstrated noradrenaline, dopamine and 5-hydroxytryptamine within nerve cell bodies and terminals5,6 and the belief that these amines act as neurohumours is strengthened by observations that nerve fibre activation leads to their release from the terminals7,8. Histo-chemical evidence suggests that discrete systems of neurones can be identified by their content of particular amines and it seems possible that such neurohumorally homogeneous systems have a functional as well as a chemical identity. Before the anatomical distribution of amine-containing neurones had been described, Brodie and Shore9 proposed that noradrenaline functions as the central neurohumour of the sympathetic and 5-hydroxytryptamine of the parasympathetic system. This suggestion has not been supported by anatomical evidence; the amine-containing neurones form systems of small diameter fibres of very diffuse terminal distribution, which do not correspond to recognized ascending or descending pathways5,6, although amine-containing neurones in invertebrates have been identified as sensory systems10.  相似文献   

6.
《Cell calcium》2016,60(6):280-288
The magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.e. in the SON proper) act through specific autoreceptors, induce distinct Ca2+ signals and regulate cellular events. Here, we demonstrate that about 70% of freshly isolated individual SON neurones from the adult non-transgenic or transgenic rats bearing AVP (AVP-eGFP) or OT (OT-mRFP1) markers, produce distinct spontaneous [Ca2+]i oscillations. In the neurones identified (through specific fluorescence), about 80% of AVP neurones and about 60% of OT neurones exhibited these oscillations. Exposure to AVP triggered [Ca2+]i oscillations in silent AVP neurones, or modified the oscillatory pattern in spontaneously active cells. Hyper- and hypo-osmotic stimuli (325 or 275 mOsmol/l) respectively intensified or inhibited spontaneous [Ca2+]i dynamics. In rats dehydrated for 3 or 5 days almost 90% of neurones displayed spontaneous [Ca2+]i oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats were oscillatory vs. about 44% (OT-mRFP1 neurones) in virgins. Together, these results unveil for the first time that both AVP and OT neurones maintain, via Ca2+ signals, their remarkable intrinsic in vivo physiological properties in an isolated condition.  相似文献   

7.
IN the abdominal ganglion of Aplysia californica, there are two types of inhibitory post-synaptic potentials (IPSPs). There are unitary short-lasting IPSPs which occur as the result of conductance changes during the movement of Cl? across the synaptic membrane—IPSPs which have definite equilibrium potentials and characteristics similar to those described for other neuronal systems1—and there are IPSPs which last much longer and may be much more effective in regulating the activity of the neurone, which Taue has called “inhibitions of long duration” (ILD)2,3. In Aplysia some of these long lasting inhibitory potentials are produced by conductance changes and have definite equilibrium potentials4. Long lasting inhibitions or “slow inhibitory potentials” as well as short lasting IPSPs have also been described in vertebrate sympathetic ganglia5, but in these, long lasting IPSPs are not accompanied by changes in membrane conductance. Some of the long lasting inhibitions (LLI) have been explained on the basis of an ATP-dependent electrogenic Na+ pump6. Presumably this ATP-dependent pump hyperpolarizes the membrane by causing an outflux of Na+ from the cell which is more rapid than the corresponding “active” influx of K+7. There is evidence now for the existence of such an electrogenic Na+ pump in some of the identified neurones of the abdominal ganglion of Aplysia californica8. Pinsker and Kandel9 have found some evidence that in these neurones the electrogenic Na+ pump is activated by the synaptic action of an identified cholinergic inhibitory interneurone, L10, producing the long lasting “late IPSP”. But Kehoe and Ascher10, although agreeing that the same interneurone (L10) produces both types of IPSPs in the follower neurones, have shown that the “late IPSP”9 is due to an increase in the K+ conductance and that it has an equilibrium potential around ?90 mV. I have found that in this abdominal ganglion there is another specific interneurone which is electrotonically coupled to L10 and which, when activated, produces a long lasting inhibition (LLI) in a number of follower neurones. Thus L10 produces the LLI or “late IPSP” in some follower neurones not directly, but through the mediation of another interneurone.  相似文献   

8.
In order to quantitatively study object perception, be it perception by biological systems or by machines, one needs to create objects and object categories with precisely definable, preferably naturalistic, properties1. Furthermore, for studies on perceptual learning, it is useful to create novel objects and object categories (or object classes) with such properties2.Many innovative and useful methods currently exist for creating novel objects and object categories3-6 (also see refs. 7,8). However, generally speaking, the existing methods have three broad types of shortcomings.First, shape variations are generally imposed by the experimenter5,9,10, and may therefore be different from the variability in natural categories, and optimized for a particular recognition algorithm. It would be desirable to have the variations arise independently of the externally imposed constraints.Second, the existing methods have difficulty capturing the shape complexity of natural objects11-13. If the goal is to study natural object perception, it is desirable for objects and object categories to be naturalistic, so as to avoid possible confounds and special cases.Third, it is generally hard to quantitatively measure the available information in the stimuli created by conventional methods. It would be desirable to create objects and object categories where the available information can be precisely measured and, where necessary, systematically manipulated (or ''tuned''). This allows one to formulate the underlying object recognition tasks in quantitative terms.Here we describe a set of algorithms, or methods, that meet all three of the above criteria. Virtual morphogenesis (VM) creates novel, naturalistic virtual 3-D objects called ''digital embryos'' by simulating the biological process of embryogenesis14. Virtual phylogenesis (VP) creates novel, naturalistic object categories by simulating the evolutionary process of natural selection9,12,13. Objects and object categories created by these simulations can be further manipulated by various morphing methods to generate systematic variations of shape characteristics15,16. The VP and morphing methods can also be applied, in principle, to novel virtual objects other than digital embryos, or to virtual versions of real-world objects9,13. Virtual objects created in this fashion can be rendered as visual images using a conventional graphical toolkit, with desired manipulations of surface texture, illumination, size, viewpoint and background. The virtual objects can also be ''printed'' as haptic objects using a conventional 3-D prototyper.We also describe some implementations of these computational algorithms to help illustrate the potential utility of the algorithms. It is important to distinguish the algorithms from their implementations. The implementations are demonstrations offered solely as a ''proof of principle'' of the underlying algorithms. It is important to note that, in general, an implementation of a computational algorithm often has limitations that the algorithm itself does not have.Together, these methods represent a set of powerful and flexible tools for studying object recognition and perceptual learning by biological and computational systems alike. With appropriate extensions, these methods may also prove useful in the study of morphogenesis and phylogenesis.  相似文献   

9.
Two types of ammonia-sensitive neurones were found on the first tarsi of the tick, Rhipicephalus sanguineus. These cells were located in the anterior pit and medial groups of sensilla on the dorsal surface of the tarsus. Ammonia-sensitive neurons showed phasic and/or tonic response patterns that were proportional to the ammonia intensity over the range of 0.2 to 100 × 10?9 moles/sec. Both types of ammonia-sensitive neurones were ‘slow-adapting’ in that they maintained their tonic responses to ammonia during periods of prolonged stimulation. Individual ammonia-sensitive cells varied in sensitivity to ammonia. As a group, the anterior pit neurones were more sensitive than the medial group neurones throughout the concentration range examined. The high degree of specificity for ammonia of ammonia-sensitive neurones was shown by their lack of responsiveness to most other stimuli presented at physiological intensities. Preliminary behavioural studies reveal that low levels of ammonia elicit questing responses from R. sanguineus. This finding, coupled with the electrophysiological evidence for primary afferent neurones sensitive to low levels of ammonia, supports the concept that ammonia plays a role in directing host-seeking or other behaviours of R. sanguineus.  相似文献   

10.
PSYCHOPHYSICAL studies have established that the human central visual system contains a large number of independent channels each of which responds maximally to a selectively oriented sine wave grating of a given spatial frequency and hardly at all to gratings of spatial frequencies differing by a factor of two1–4. Electrophysiological studies with moving sinusoidally modulated grating patterns have demonstrated that there exists a class of neurones in the striate cortex of cats5 and monkeys6 each member of which is maximally selective to a given spatial frequency and orientation.  相似文献   

11.
Probable Identity of Tissue Specific Historie with Encephalitogenic Protein   总被引:1,自引:0,他引:1  
SOME years ago Tomasi and Kornguth isolated a basic protein from the brains of adult pigs1. Fluorescent immunohisto-chemical studies indicated that it was localized in the nuclei of neurones and spermatogonia and the suggestion was made that it was a tissue-specific histone2. The amino-acid composition of this brain protein is very similar to that of a basic encephalitogenic protein isolated from myelin of a variety of animal species3–12.  相似文献   

12.
Most bees are diurnal, with behaviour that is largely visually mediated, but several groups have made evolutionary shifts to nocturnality, despite having apposition compound eyes unsuited to vision in dim light. We compared the anatomy and optics of the apposition eyes and the ocelli of the nocturnal carpenter bee, Xylocopa tranquebarica, with two sympatric species, the strictly diurnal X. leucothorax and the occasionally crepuscular X. tenuiscapa. The ocelli of the nocturnal X. tranquebarica are unusually large (diameter ca. 1 mm) and poorly focussed. Moreover, their apposition eyes show specific visual adaptations for vision in dim light, including large size, large facets and very wide rhabdoms, which together make these eyes 9 times more sensitive than those of X. tenuiscapa and 27 times more sensitive than those of X. leucothorax. These differences in optical sensitivity are surprisingly small considering that X. tranquebarica can fly on moonless nights when background luminance is as low as 10−5 cd m−2, implying that this bee must employ additional visual strategies to forage and find its way back to the nest. These strategies may include photoreceptors with longer integration times and higher contrast gains as well as higher neural summation mechanisms for increasing visual reliability in dim light.  相似文献   

13.
Hypoxia alters neuronal function and can lead to neuronal injury or death especially in the central nervous system. But little is known about the effects of hypoxia in neurones of the peripheral nervous system (PNS), which survive longer hypoxic periods. Additionally, people have experienced unpleasant sensations during ischemia which are dedicated to changes in conduction properties or changes in excitability in the PNS. However, the underlying ionic conductances in dorsal root ganglion (DRG) neurones have not been investigated in detail. Therefore we investigated the influence of moderate hypoxia (27.0 ± 1.5 mmHg) on action potentials, excitability and ionic conductances of small neurones in a slice preparation of DRGs of young rats. The neurones responded within a few minutes non-uniformly to moderate hypoxia: changes of excitability could be assigned to decreased outward currents in most of the neurones (77%) whereas a smaller group (23%) displayed increased outward currents in Ringer solution. We were able to attribute most of the reduction in outward-current to a voltage-gated K+ current which activated at potentials positive to -50 mV and was sensitive to 50 nM α-dendrotoxin (DTX). Other toxins that inhibit subtypes of voltage gated K+ channels, such as margatoxin (MgTX), dendrotoxin-K (DTX-K), r-tityustoxin Kα (TsTX-K) and r-agitoxin (AgTX-2) failed to prevent the hypoxia induced reduction. Therefore we could not assign the hypoxia sensitive K+ current to one homomeric KV channel type in sensory neurones. Functionally this K+ current blockade might underlie the increased action potential (AP) duration in these neurones. Altogether these results, might explain the functional impairment of peripheral neurones under moderate hypoxia.  相似文献   

14.
FIRING rates of single neurones in the “feeding system”—the perifornical and ventromedial areas of the hypothalamus—are altered by the systemic administration of an anorexigenic agent, such as amphetamine or glucose1–4. Using the micro-iontophoretic technique which involves releasing chemicals directly on individual neurones, Oomura et al. confirmed that glucose can alter the spontaneous firing rates of some neurones in the hypothalamus of the rat5. We wish to report that micro-iontophoretic applications of glucose, amphetamine and noradrenaline to hypothalamic neurones yield a pattern of results not readily reconcilable with the current views of the role of adrenergic substances as “transmitters” in the regulation of hypothalamic feeding function.  相似文献   

15.
INJECTIONS of adrenergic drugs into the hypothalamus of the rat have a wide variety of effects on feeding. Depending on site of injection, dosage, the rat's hunger state and the drugs' peripheral alpha or beta characteristics, food intake may be elicited1–7 or suppressed7–9, or reactions to particular tastes may be modified either directly10–12 or by associative learning13. Such effects have been thought to result from the action of the injected drugs on synaptic receptors that normally respond to endogenous catecholamines. Adrenergic drugs can have marked effects on brain glycogen, however, varying widely in time course and direction between drugs and doses14–17. Drug-induced glycogenolysis might appreciably increase or decrease the supply of glucose to neurones affected. The firing rates of some neurones in both the ventromedial and lateral regions of the rat hypothalamus are influenced by the local concentration of glucose18,19. Furthermore, many of these glucosensitive units are affected by amphetamine19, which increases the amount of noradrenaline at the synapse20, inhibits feeding when injected into the hypothalamus9 and facilitates feeding when injected either with propranolol into the lateral hypothalamus or by itself into the ventromedial hypothalamus6. Although it has yet to be proved that hypothalamic glucose-sensitive neurones control normal feeding, the question arises whether any of the effects of hypothalamic injection of adrenergic drugs on feeding arise from metabolic rather than synaptic action.  相似文献   

16.
RHODOPSIN, the visual pigment of vertebrate rods, has been shown to consist of a chromophore (11-cis retinal) bound to a protein (opsin)1–2. It has been proposed that the linkage is a Schiff base between phosphatidyl ethanolaniine (PE) and retinal and that when exposed to light, the retinal migrates from PE to the ε-amino-group of a lysine residue in opsin3–7. Most of the support for this theory comes from the observation that N-retinylidenephosphatidylethanolamine (N-RPE) can be extracted in the dark from rod outer segments (ROS)3,4. Furthermore, N-retinylphosphatidylethanolamine (N-RH2PE) has been extracted from ROS preparations after treating the visual pigment with acid and NaBH4—conditions which are assumed fix retinal to its “native” binding site through a secondary amine linkage7. All these studies, however, were carried out on crude extracts of ROS in various detergents. These crude extracts contain large amounts of phospholipid and retinal which is not bound to opsin. Thus, the isolation of N-RPE from crude ROS extracts does not necessarily point to its involvement in the binding of retinal to opsin. In contradiction to these reports are findings that purified visual pigment contains no phospholipid9,10 and that the molar concentration of N-RPE in bovine ROS is less than that of rhodopsin11. We have taken advantage of the observation that visual pigment in the outer segment disks is continually being renewed12 to label the rhodopsin with 3H-retinal and to show in yet another way that N-RPE does not exist in purified visual pigment.  相似文献   

17.
SINGLE-CELL pacemaker activity is interesting because of its function in temporal organization and information processing in the nervous system. Many invertebrate neurones are regularly and autonomously active1,2. Although the pacemaker rhythm probably originates within the recorded neurone, it is not clear whether it originates in the axonal tree or in the cell soma. Alving3 approached this question by studying pacemaker activity in the soma of Aplysia nerve cells, after ligaturing the axonal stem with fine sutures. The study described here presents evidence that nerve cell somata which are completely dissociated from all surrounding tissue and with or without axons, are able to maintain regular autorhythmic activity for periods of more than 24 h. The method of complete isolation of cells represents some progress over Alving's method because it is easier to accomplish, has a larger yield of viable neurones and allows longer recording periods.  相似文献   

18.
γ-Aminobutyric Acid Uptake by Sympathetic Ganglia   总被引:20,自引:0,他引:20  
EXOGENOUS γ-aminobutyric acid (GABA) accumulates against a concentration gradient in isolated mammalian nervous tissue1–3 and mixes with GABA stored in the tissue4. Thus, neurones which use GABA as an inhibitory transmitter might be identified by locating sites of accumulation of radioactively-labelled GABA using autoradiography5–7, assuming that exogenous GABA is only taken up into neurones already containing GABA. A correlation between GABA uptake and endogenous content has been noted in slices from different parts of the brain3 and in different nerve-ending fractions8–10. These experiments, however, do not show whether GABA can be accumulated in nerve tissue totally devoid of “gabanergic” neurones. To test this, we have measured the uptake of GABA by isolated sympathetic ganglia. The principal transmitter in the ganglion is acetylcholine while the postganglionic neurones are mainly adrenergic. By analogy with the brain, the ganglion contains negligible amounts of GABA, glutamic decarboxylase or GABA-transaminase11,12.  相似文献   

19.
1. GABA receptors in Achatina identifiable giant neurones were classified into the muscimol I, muscimol II and baclofen types. Muscimol I and II type GABA receptors were sensitive to GABA and muscimol but insensitive to baclofen, whereas baclofen type receptors were sensitive to GABA and baclofen but insensitive to muscimol. Muscimol I and baclofen types were associated with the inhibition caused by GABA, while muscimol II type with the GABA excitation.2. GABA, muscimol and TACA produced a transient outward current (Iout) with an increase in membrane conductance (g) of an Achatina neurone, TAN, having the muscimol I type GABA receptors. Their relative potency values (RPV) at GABA ed50 (approximately 10−4 M) were: GABA: muscimol: TACA = 1:0.6:0.3. The GABA effects were potentiated by pentobarbitone, antagonized competitively by pitrazepin and non-competitively by picrotoxin and diazepam, and unaffected by bicuculline. The ionic mechanism of effects of GABA and its two analogues was the increase in membrane Cl conductance (gCl).3. GABA and (±)-baclofen produced a slow Iout with a g increase of another Achatina neurone, RPeNLN, having the baclofen type GABA receptors. The two compounds were almost equipotent (ed50: approximately 3 × 10−4 M). The ionic mechanism of their effects was the increase in gk. The two compounds hardly affected the voltage-gated and slowly inactivating calcium current. Iout produced by GABA and (±)-baclofen were reduced by TEA, but unaffected by 4-AP, bicuculline, pitrazepin and picrotoxin.4. β-hydroxy-l-glutamic acid (l-BHGA) showed the marked effects on the Achatina giant neurones; the two neurones were excited by the compound, whereas the three inhibited. D-BHGA, l-Glu, d-Glu and NMDA were less effective than l-BHGA or almost ineffective. Erythro-l-BHGA was more or less effective than threo-l-BHGA according to the neurones tested.5. α-Kainic acid and domoic acid excited the two neurones, which were excited by l-BHGA. l-Quisqualic acid showed the similar effects to l-BHGA, which were mostly much stronger than l-BHGA. Erythro-l-tricholomic acid and dl-ibotenic acid showed the effects similar to l-BHGA selectively on some neurones.6. It was pointed out that the pharmacological features of GABA on the Achatina neurones are simpler than those of l-BHGA, due to the simpler structure of the former compound having less binding sites than the latter.  相似文献   

20.
We report wavelength-specific thresholds of leptocephali of Japanese eels Anguilla japonica determined from their negative-phototactic behaviour. Leptocephali are most sensitive to wavelengths 400–500 nm and at very short wavelengths. Their visual sensitivity decreases more sharply at wavelengths >500 nm than it does at wavelengths <400 nm. The spectral sensitivity of leptocephali adapts to the optical conditions of their habitat. The mean visual sensitivity threshold of leptocephali is 7.22 × 10−4 μmol m−2 s−1 between 400 and 500 nm. Based on visual sensitivity thresholds of 475 nm, the most transparent wavelength in waters where these leptocephali occur, the daytime depth of occurrence of these larvae may exceed 250 m. LEDs emitting light of wavelength 625 nm in culture environments would minimise disturbance to leptocephali during facility maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号