首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to conflicting reports on the properties of Rhus laccase depleted in type 2 copper a further investigation of this protein derivative has been undertaken. In contrast to most other reports it is shown that the type 3 copper site retains its absorbance at 330 nm when type 2 copper is removed. The type 3 copper ions are oxidized in the resting protein and part of the type 3 Cu(II) can be made electron paramagnetic resonance (epr) detectable on reduction by ascorbate. This new epr signal is highly rhombic and the epr parameters are comparable to those found in other metalloproteins containing Cu(II) in binuclear sites. Certain preparations of type 2 deficient protein exhibit lower extinction coefficients at 330 nm. Since these protein derivatives have lost some type 3 copper, it is inferred that the absorbance at 330 nm is dependent on a native type 3 copper site. Also in contrast to other reports, it is found that the extinction coefficient at 614 nm of the type 1 Cu(II) decreases from 5700 to 4700 M?1cm?1 when type 2 copper is removed. The oxidized-reduced difference spectrum also shows a substantial decrease in the absorbance between 700 and 800 nm. The changes in absorbance above 600 nm are probably due to a modification of the type 1 Cu(II) site on removal of type 2 copper. The present results also suggest some explanations to the apparent discrepancies among the earlier reports.  相似文献   

2.
Among thiol‐dependent peroxidases (TDPs) peroxiredoxins (PRXs) standout, since they are enzymes capable of reducing hydrogen peroxide, alkylhydroperoxides and peroxynitrite, and have been detected in a proteomic study of the copper‐tolerant species Scytosiphon gracilis. In order to determine the importance of these enzymes in copper‐stress tolerance, TDP activity and type II peroxiredoxin (II PRX) protein expression were compared between the opportunistic S. gracilis and the brown kelp Lessonia nigrescens, a species absent from copper‐impacted sites due to insufficient copper‐tolerance mechanisms. Individuals of both species were cultured with increasing copper concentrations (0–300 µg l?1 Cu) for 96 h and TDP activity and lipoperoxides (LPXs) were determined together with II PRX expression by immunofluorescence and Western blot analysis. The results showed that TDP activity was higher in S. gracilis than L. nigrescens in all copper concentrations, independent of the reducing agent used (dithiothreitol, thioredoxin or glutaredoxin). This activity was copper inhibited in L. nigrescens at lower copper concentrations (20 µg l?1 Cu) compared to S. gracilis (100 µg l?1 Cu). The loss of activity coincided in both species with an increase in LPX, which suggests that TDP may control LPX production. Moreover, II PRX protein levels increased under copper stress only in S. gracilis. These results suggest that in S. gracilis TDP, particularly type II peroxiredoxin (II PRX), acts as an active antioxidant barrier attenuating the LPX levels generated by copper, which is not the case in L. nigrescens. Thus, from an ecological point of view these results help explaining the inability of L. nigrescens to flourish in copper‐enriched environments.  相似文献   

3.
Multicopper oxidases (MCOs) are unique among copper proteins in that they contain at least one each of the three types of biologic copper sites, type 1, type 2, and the binuclear type 3. MCOs are descended from the family of small blue copper proteins (cupredoxins) that likely arose as a complement to the heme-iron-based cytochromes involved in electron transport; this event corresponded to the aerobiosis of the biosphere that resulted in the conversion of Fe(II) to Fe(III) as the predominant redox state of this essential metal and the solubilization of copper from Cu2S to Cu(H2O) n 2+. MCOs are encoded in genomes in all three kingdoms and play essential roles in the physiology of essentially all aerobes. With four redox-active copper centers, MCOs share with terminal copper-heme oxidases the ability to catalyze the four-electron reduction of O2 to two molecules of water. The electron transfers associated with this reaction are both outer and inner sphere in nature and their mechanisms have been fairly well established. A subset of MCO proteins exhibit specificity for Fe2+, Cu+, and/or Mn2+ as reducing substrates and have been designated as metallooxidases. These enzymes, in particular the ferroxidases found in all fungi and metazoans, play critical roles in the metal metabolism of the expressing organism.  相似文献   

4.
Cu2+ ion determinations were carried out in complex and in inorganic salts-glycerol media, to which increasing amounts of Cu(II) had been added, with the ion-specific Cu(II)-Selectrode. Likewise, complexing capacity of bacterial suspensions was estimated by titration with CuSO4.Copper-sensitive bacteria, e.g.,Klebsiella aerogenes, were inhibited in their growth and survival in the range of 10–8–10–6 M Cu2+ ion concentrations. In copper-buffered complex media, high copper loads could be tolerated, as growth proceeded with most of the copper bound to medium components. In low-complexing mineral salts media, in which high Cu2+ ion concentrations exist at low copper loads, there was competition of Cu2+ for binding sites of the cells. Total allowed copper was then determined by the ratio of copper to biomass.Copper-resistant bacteria could be isolated from a stock solution of CuSO4, containing 100 ppm Cu(II). They were of thePseudomonas type and showed a much higher tolerance towards Cu2+, up to 10–3 M.  相似文献   

5.
Under copper limiting growth conditions the methanotrophic bacterium Methylococcus capsulatus (Bath) secrets essentially only one protein, MopE*, to the medium. MopE* is a copper-binding protein whose structure has been determined by X-ray crystallography. The structure of MopE* revealed a unique high affinity copper binding site consisting of two histidine imidazoles and one kynurenine, the latter an oxidation product of Trp130. In this study, we demonstrate that the copper ion coordinated by this strong binding site is in the Cu(I) state when MopE* is isolated from the growth medium of M. capsulatus. The conclusion is based on X-ray Near Edge Absorption spectroscopy (XANES), and Electron Paramagnetic Resonance (EPR) studies. EPR analyses demonstrated that MopE*, in addition to the strong copper-binding site, also binds Cu(II) at two weaker binding sites. Both Cu(II) binding sites have properties typical of non-blue type II Cu (II) centres, and the strongest of the two Cu(II) sites is characterised by a relative high hyperfine coupling of copper (A|| = 20 mT). Immobilized metal affinity chromatography binding studies suggests that residues in the N-terminal part of MopE* are involved in forming binding site(s) for Cu(II) ions. Our results support the hypothesis that MopE plays an important role in copper uptake, possibly making use of both its high (Cu(I) and low Cu(II) affinity properties.  相似文献   

6.
Halocyanin from the haloalkaliphilic archaean Natronobacterium pharaonis is a peripheral membrane type 1 blue copper protein with a single polypeptide chain of 163 amino acid residues. Halocyanin participates as putative electron carrier protein associated to an electron acceptor role for a terminal oxidase and has the lowest redox potential value reported to date for a BCP. NMR studies and homology modeling calculations were performed to evaluate the electronic properties of Cu(II)-halocyanin from Natronobacterium pharaonis. The copper coordination site properties of Cu(II)-halocyanin are discussed. The 1H NMR spectra, isotropic chemical shifts and relaxation times for halocyanin are compared with those of other BCPs such as azurin, amicyanin, plastocyanin and stellacyanin. The wild-type Cu(II)-halocyanin presents almost the same 1H NMR spectra in comparison with Cu(II)-plastocyanin as expected from a similar coordination symmetry. However, minor differences were found. In order to get some insight on these differences, a computational model for Cu(II)-halocyanin from N. pharaonis was built. Model is based on sequential homology of halocyanin with two different families of proteins: plastocyanins and pseudoazurins. Homology modeling was performed using two different structural templates and copper ion was added for further refinement of the coordination site. Proposed structure was in good agreement with NMR experimental information and is the first three-dimensional model reported to date of an halocyanin. Small differences were found in the copper coordination site with respect to other BCP with known structure. This work is also an interesting example of expertise-driven homology modeling across different protein families.  相似文献   

7.
The synthesis, crystal structure determination and magnetic properties of a new five-coordinated unsymmetrical copper(II) dinuclear complex [Cu2Cl3(C7H6N2)5]Cl·4H2O are reported. The crystals are orthorhombic, space group Pnma with 4 formula units in a cell of dimensions: a = 19.506(3), b = 17.384(4), C = 11.940(2) Å. The structure was solved by direct methods. Least-squares refinement using 2138 independent reflections with I3σ(I) has led to a final value of the conventional R factor (on F) of 0.047 and Rw of 0.049. The complex cation consists of pairs of deformed trigonal-bipyramidal copper(II) centers which share an edge by two equatorial chloride ions. The equatorial coordination sites of the Cu(1) atom are occupied by three chloride ligands, while of the Cu(2) atom by two chloride and one benzimidazole ligands. The axial sites are occupied by the nitrogen atoms from four benzimidazole ligands. The Cu atoms and equatorial ligands are located on the symmetry plane. The Cu---Cu non-bonding distance in the complex is 3.386(1) Å; the two shorter bridging Cu(1)---Cl(1) and Cu(2)---Cl(1) distances are 2.402(2) and 2.424(2) Å; the two longer Cu(1)---Cl(2) and Cu(2)---Cl(2) are 2.620(2) and 2.551(2) Å. The Cu(1)---Cl(1)---Cu(2) and Cu(1)---Cl(2)---Cu(2) angles are 89.1(1) and 81.8(1)°. The structure is the first example of a bibridged binuclear complex with two non-equivalent Cu---Cl---Cu bridges. Comparison to other binuclear bis(μ-halide)-bridged copper complexes of similar structure has been made. Magnetic susceptibility measurements indicate ferromagnetic coupling of the copper(II) centers, the intramolecular exchange parameter, 2J, being 5.6 cm−1 and the intermolecular one J′ = −0.6 cm−1. The investigation of the electronic structure of the complex and the orbital interpretation of the magnetic coupling based on extended Hückel molecular orbital calculations are also presented.  相似文献   

8.
In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein.  相似文献   

9.
 The role of the cysteine thiolate ligand for the unusual copper coordination geometry in the blue copper proteins has been studied by comparing the electronic structure, geometry, and energetics of a number of small Cu(II) complexes. The geometries have been optimised with the density functional B3LYP method, and energies have been calculated by multiconfigurational second-order perturbation theory (the CASPT2 method). Most small inorganic Cu(II) complexes assume a tetragonal geometry, where four ligands make σ bonds to a Cu 3d orbital. If a ligand lone-pair orbital instead forms a π bond to the copper ion, it formally occupies two ligand positions in a square coordination, and the structure becomes trigonal. Large, soft, and polarisable ligands, such as SH and SeH, give rise to covalent copper-ligand bonds and structures close to a tetrahedron, which might be trigonal or tetragonal with approximately the same stability. On the other hand, small and hard ligands, such as NH3, OH2, and OH, give ionic bonds and flattened tetragonal structures. It is shown that axial type 1 (blue) copper proteins have a trigonal structure with a π bond to the cysteine sulphur atom, whereas rhombic type 1 and type 2 proteins have a tetragonal structure with σ bonds to all strong ligands. The soft cysteine ligand is essential for the stabilisation of a structure that is close to a tetrahedron (either trigonal or tetragonal), which ensures a low reorganisation energy during electron transfer. Received: 9 July 1997 / 26 November 1997  相似文献   

10.
《Inorganica chimica acta》1988,151(4):261-263
The model process of oxidation of reduced glutathione through chelate copper complexes has been studied, the former being structural analogues of the active centers of ‘blue’ copper proteins. Glutathione forms the relatively stable intermediate CuLSG+ with copper complexes in acetonitrile. The intramolecular electron transfer S(glutathione)→Cu(II) is the rate-determining step of the substrate oxidation. On the basis of rate constant (kobs) values as well as activation energy (E3) values, we have concluded that there is a possibility of functional modelling of active centers of type 1 Cu by copper complexes with thioaza ligands.  相似文献   

11.
The possible time- and/or light-dependent decomposition of the purple Cu(I), Cu(II)-complex of D-penicillamine (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5? was examined. Superoxide dismutase activity of the freshly prepared complex was assayed using the nitroblue tetrazolium assay. The formazan colour formation was inhibited by 50% in the presence of approximately 500 μM copper. Ageing of the copper complex, especially in the light, resulted in a marked increase of EDTA-sensitive activity. Upon gel chromatography of the aged samples the original low inhibitory activity was restored. All EDTA-sensitive inhibitory activity was found in a clearly separated low Mr copper-containing fraction. Aerobic irradiation with a tungsten lamp at 30 °C accelerated the decomposition of (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5?. ?Cu518 = 1800 M?1 cm?1 dropped to ?Cu640 = 60 M?1 cm?1. The photochemical conversion of (Cu(II)6? Cu(I)8(D-penicillamine)12Cl)5? was complete within 48 h. Due to the identical electronic absorption profile of both, the decomposition product and Cu(II) D-penicillamine disulphide the latter complex was assigned to be the unknown low Mr copper-compound. Circular dichroism and electron paramagnetic resonance measurements support this conclusion.  相似文献   

12.
Cupric insulin was modified by the addition of cross-linking disulphide bridges between hexamers. The electron paramagnetic resonance (EPR) spectrum of this freeze-dried material was compared with that of freeze-dried unmodified cupric insulin containing various amounts of copper and added water. The modified insulin was found to have cupric ion sites magnetically very similar to that of native insulin containing two cupric ions per hexamer. Native hexamer produced in the presence of 2 Cu(II) ions per hexamer gave, after freeze-drying, an EPR spectrum with ACu=16.5 mT, g=2.285 and g=2.059 (site 1). The use of 4 or 6 Cu(II) ions per hexamer resulted in spectra with two components-a major component with the same ACu and g values as the sample containing 2 Cu(II) ions (site 1) and an additional minor component (site 2). These sites have been identified with the analogous zinc binding site within the hexamer formed by three B-10 histidine residues (site 1) [1, 2] and the site formed by the B-1 α-amino and A-17 glutamyl-γ-barboxylic acid functions where excess zinc is bound (site 2) [3, 4]. The addition of water to native hexamer containing 2, 4, or 6 Cu(II) ions resulted in the appearance of three distinct EPR absorptions, one of which had the same parameters as the freeze-dried native insulin containing 2 Cu(II) ions per hexamer (site 1). Two further sites appeared (3 and 4) with the following parameters: ACu=15.0 mT, g=2.353, and g=2.07; ACu=16.5 mT, g=2.315, and g=2.07, respectively.  相似文献   

13.
Copper(I) is an essential metal for all life forms. Though Cu(II) is the most abundant and stable state, its reduction to Cu(I) via an unclear mechanism is prerequisite for its bioutilization. In eukaryotes, the copper transporter-1 (CTR1) is the primary high-affinity copper importer, although its mechanism and role in Cu(II) reduction remain uncharacterized. Here we show that extracellular amino-terminus of human CTR1 contains two methionine-histidine clusters and neighboring aspartates that distinctly bind Cu(I) and Cu(II) preceding its import. We determined that hCTR1 localizes at the basolateral membrane of polarized MDCK-II cells and that its endocytosis to Common-Recycling-Endosomes is regulated by reduction of Cu(II) to Cu(I) and subsequent Cu(I) coordination by the methionine cluster. We demonstrate the transient binding of both Cu(II) and Cu(I) during the reduction process is facilitated by aspartates that also act as another crucial determinant of hCTR1 endocytosis. Mutating the first Methionine cluster (7Met-Gly-Met9) and Asp13 abrogated copper uptake and endocytosis upon copper treatment. This phenotype could be reverted by treating the cells with reduced and nonreoxidizable Cu(I). We show that histidine clusters, on other hand, bind Cu(II) and are crucial for hCTR1 functioning at limiting copper. Finally, we show that two N-terminal His-Met-Asp clusters exhibit functional complementarity, as the second cluster is sufficient to preserve copper-induced CTR1 endocytosis upon complete deletion of the first cluster. We propose a novel and detailed mechanism by which the two His-Met-Asp residues of hCTR1 amino-terminus not only bind copper, but also maintain its reduced state, crucial for intracellular uptake.  相似文献   

14.
A two-dimensional copper(II) polymer with formula of [Cu4(H2O)4(dmapox)2(btc)]n · 10nH2O, where dmapox is the dianion of N,N′-bis[3-(dimethylamino)propyl]oxamide and btc is the tetra-anion of 1,2,4,5-benzenetetracarboxylic acid, was synthesized and characterized by elemental analysis, conductivity measurement, IR and electronic spectral studies. The crystal structure of the complex has been determined by X-ray single-crystal diffraction. The structure consists of crystallized water molecules and neutral two-dimensional copper(II) coordination polymeric networks constructed both by the bis-tridentate μ-trans-dmapox and tetra-monodentate μ4-btc bridging ligands. Each btc ligand links four trans-dmapox-bridged binuclear copper(II) building blocks [Cu2(H2O)2(trans-dmapox)]2+ and each binuclear copper(II) building block attaches to two btc ligands forming an infinite 2D layer which consists of 4+4 grids with dimensions of 13.563(5) × 15.616(5) Å. The environment around the copper(II) atom can be described as a distorted square-pyramid and the Cu?Cu separations through μ-trans-dmapox and μ4-btc bridging ligands are 5.225 Å (Cu1-Cu1i), 5.270 Å (Cu2-Cu2ii), 6.115 Å (Cu1-Cu2), 9.047 Å (Cu1-Cu2iii) and 10.968 Å (Cu1-Cu1iii), respectively. Abundant hydrogen bonds among the crystallized, the coordinated water molecules, and the uncoordinated carboxyl oxygen atoms cross-link the two-dimensional layers into an overall three-dimensional channel-like framework. The interaction of the copper(II) polymer with calf thymus DNA (CT-DNA) has been investigated by using absorption, emission spectral and electrochemical techniques. The results indicate that the copper(II) polymer interacts with DNA strongly (Kb = 4.8 × 105 M−1 and Ksv = 1.1 × 104) and the interaction mode between the copper(II) polymer and DNA may be the groove binding. To the best of our knowledge, this is the first report about the crystal structure and DNA-binding studies of a two-dimensional copper(II) polymer bridged both by the trans-oxamidate and btc ligands.  相似文献   

15.
Adsorption of copper and zinc in lignimerin (an organic material mainly composed by lignin, carbohydrate fragments and some extractives) and its acid derivative (H-lignimerin), recovered from Kraft cellulose mill wastewater was examined. A Box–Behnken experiment design, used to optimize lignimerin recovery process, revealed that the type of solvent used for precipitation is a determining factor in the amount of substance obtained. Conversely, batch adsorption studies at pH 4.0 revealed that the maximum adsorption capacities, modeled by the Langmuir equation, were 666.7 and 370.4 mmol kg−1 for Cu(II) and Zn(II), respectively in lignimerin and 232.6 and 312.5 mmol kg−1 for Cu(II) and Zn(II), respectively in H-lignimerin. The adsorption of Cu(II) and Zn(II) through deprotonated hydroxyl and carboxylic groups was the dominant mechanism that may explain the adsorption in both materials. The adsorption capacities indicated that lignimerin, with a molecular mass between 50 and 70 kDa, has a potential use as an organic sorbent for removing copper and zinc from liquid resources.  相似文献   

16.
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper‐binding metal chaperones, which deliver copper ions to efflux systems or metal‐binding sites of copper‐requiring proteins. In their publication in this issue, Osman et al. ( 2013 ) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P‐type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. ( 2013 ) change our view of the cell biology of copper in enterobacteria.  相似文献   

17.
A new type of Cu(II) epr signals have been produced in native and type 2 copper depleted Rhus vernicifera laccase. They are shown to originate from one of the type 3 copper ions that are epr silent in the resting enzyme. The new epr signals show high rhombicity in g tensor and are similar to those observed in other proteins, such as superoxide dismutase and half-met hemocyanin. The half-reduced type 3 copper pair is formed by reduction with an electron from type 1 Cu(I) but only after a reoxidation of the copper pair, either by peroxide or dioxygen. It is suggested that the half-reduction of the type 3 copper pair only occurs in molecules where type 2 copper ion is either reduced or absent.  相似文献   

18.
The 1H n.m.r. spectra of apo-, Cu(I) and Cu(II) azurins from Pseudomonas aeruginosa have been measured. Three of the four histidines have been assigned. The effect of the copper(II) ion acting as an intrinsic paramagnetic perturbant leads to the proposal that one of the histidines is far from the metal and another is closer, but not bound, to the copper. The possibility that the remaining two histidines are ligands to the copper is considered. The relationship to the sequence is discussed.  相似文献   

19.
The synthesis of an unsymmetrical phenanthroline-based ligand, 2-methyl-9-(3,5-dimethylpyrazolylmethyl)-1,10-phenanthroline (L), and its cupric [Cu(II)] (1) and cuprous [Cu(I)] (2) complexes, are reported. The X-ray structures of each of these Cu complexes show distinct changes in coordination environments consistent with the geometrical preferences of the two oxidation states. In the solid-state, the Cu(II) complex (1) adopts a geometry best described as trigonal bipyramidal, while the Cu(I) complex (2) consists of a single dicationic dimer in which the ligand bridges between two copper ions, separated by 4.26 Å. The two Cu(I) coordination sites differ in 2 with one copper center complexed in a trigonal planar geometry and the other copper in a distorted tetrahedral environment; the latter coordination results from an additional CH3CN ligand. Complex 1 exhibits a reversible redox process at −0.34 V versus Fc/Fc+ in CH3CN, attributable to the Cu2+/Cu+ couple, while the dimeric Cu(I) complex (2) does not display this redox couple on the CV timescale. Over minutes however, complex 1 does oxidize in the presence of dioxygen to 2 in CH3CN.  相似文献   

20.
l-3-Phenylpropane-1,2-diamine (dapp) was prepared by a three-step synthesis based on l-phenylalanine and characterized, including determination of stability constants with M2+ ions (Ni, Cu, Zn, Cd). The reaction of L-3-phenylpropane-1,2-diamine as the [Cu(dapp)2]2+ complex ion with formaldehyde and nitroethane in basic solution yields the acyclic (5-methyl-5-nitro-1,9-diphenyl-3,7-diazanonane-1,9-diamine)copper(II) complex ion, [Cu(1)]2+, as the major product. In addition, small amounts of the macrocyclic complex ion (2,10-diphenyl-6,13-dimethyl-6,13-dinitro-1,4,8,11-tetraazacyclotetradecane)copper(II), [Cu(2)]2+, form. Reduction of the [Cu(1)]2+ ion with zinc in aqueous acid yields the acyclic polyamine 5-methyl-1,9-diphenyl-3,7-diazanonane-1,5,9-triamine (3), an analogue of the previously reported pentaamine 5-methyl-3,7-diazanonane-1,5,9-triamine. Using the bis(l-3-phenylpropane-1,2-diamine)palladium(II) as precursor and an excess of other reagents, the macrocyclization reaction to produce [Pd(2)]2+ proved more successful. Reduction and recomplexation to copper(II) allowed isolation of the 2,9-dibenzyl-6,13-diammonio-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane)copper(II) ion, [Cu(4H22+)]4+. The acyclic complex [Cu(1)]2+ promotes the hydrolytic cleavage of plasmid DNA modestly; a mechanism to support this observation is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号