首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To elucidate the evolutionary relationships of the major lineages within the moth family Nolidae, we analysed a molecular dataset comprising eight independent gene regions (6.4 kbp), cytochrome c oxidase subunit I (COI) from the mitochondrial genome, and elongation factor‐1α (EF‐1α), ribosomal protein S5 (RpS5), carbamoylphosphate synthase domain protein (CAD), cytosolic malate dehydrogenase (MDH), glyceraldehyde‐3‐phosphate dehydrogenase (GAPDH), isocitrate dehydrogenase (IDH) and wingless genes from the nuclear genome, using parsimony and model‐based evolutionary methods (maximum likelihood and Bayesian inference). Our analyses revealed a well‐resolved phylogenetic hypothesis, again recovering the six previously recognized families within Noctuoidea (i.e. Oenosandridae, Notodontidae, Euteliidae, Erebidae, Nolidae and Noctuidae), and monophyly of the quadrifid Noctuoidea (i.e. Euteliidae, Erebidae, Nolidae and Noctuidae). The family Nolidae is diagnosed and characterized by two synapomorphies from morphology: construction of a ridged boat‐shaped cocoon that bears a vertical exit slit at one end; and two other morphological character states: elongation of the forewing retinaculum into a bar‐like or digitate condition and possession of a postpiracular counter‐tympanal hood. We present a new phylogenetic hypothesis for Nolidae consisting of eight strongly supported subfamilies, two of which are erected here: Diphtherinae, Risobinae, Collomeninae subfam. nov., Beaninae subfam. nov., Eligminae, Westermanniinae, Nolinae and Chloephorinae. Where we are able, each monophyletic lineage is diagnosed by morphological autapomorphies and within each subfamily, monophyletic tribes and subtribes are circumscribed, most of which are also diagnosable by morphological apomorphies. We also describe two new taxa: Gelastocerini trib. nov. and Etannina subtrib. nov. The Neotropical subfamily Diphtherinae, here newly circumscribed, is considered to be the plesiomorphic sister lineage to the rest of Nolidae. Diphtherinae are characterized by loss of the proximal pair of metatibial spurs in males and by the presence of a frontal tubercle, which is presumably associated with a derived strategy of emergence from the cocoon.  相似文献   

2.
We re‐examine the higher level phylogeny and evolutionary affinities of the family Gelechiidae (Lepidoptera: Gelechioidea) based on DNA sequence data for one mitochondrial gene (cytochrome c oxidase subunit I) and seven nuclear genes (Elongation Factor‐1α, wingless, Ribosomal protein S5, Isocitrate dehydrogenase, Cytosolic malate dehydrogenase, Glyceraldehyde‐3‐phosphate dehydrogenase and Carbamoylphosphate synthase domain protein). Fifty‐two taxa representing nearly all established subfamilies and tribes of Gelechiidae, and about 10% of described gelechiid genera, in addition to five outgroup taxa were sequenced. Data matrices (6157 bp total) were analysed under model‐based evolutionary methods (Maximum Likelihood and Bayesian Inference), resulting in novel high‐level phylogenetic interrelationships. The best supported cladogram divided the Gelechiidae into six distinct clades corresponding to the subfamilies Anacampsinae, Dichomeridinae, Apatetrinae, Thiotrichinae, Anomologinae and Gelechiinae (+ Physoptilinae, which were not available for study). The results suggest the following adjustments in gelechiid interrelationships: Brachmini is nested within Dichomeridinae; Anarsiini is the sister group of Chelariini; Pexicopiinae is the sister group of Apatetrinae, here suggested to be treated as a tribe Pexicopiini of Apatetrinae. A new subfamily Thiotrichinae ( subfam.n. ) is proposed on the basis of the resurrected genus Thiotricha Meyrick ( gen.rev. ), which includes Macrenches Meyrick, Palumbina Rondani and Polyhymno Chambers. Gelechiidae display a wide array of life‐history strategies, but the diversity in patterns of larval mode of life has direct phylogenetic correlation only below subfamily level, suggesting multiple origins and/or frequent reversals for traits such as external or internal feeding and leaf mining within the family.  相似文献   

3.
The familial placements of Cyrtandromoea Zoll. and Wightia Wall., two small and enigmatic South‐East Asian genera, have long been controversial in Lamiales. Here we adopt a two‐step approach to resolve their phylogenetic relationships. We initially reconstructed a large‐scale phylogeny of Lamiales using six chloroplast markers (atpB, matK, ndhF, psbBTNH, rbcL, and rps4). The results showed that both Cyrtandromoea and Wightia emerged in the LMPO clade, including Lamiaceae, Mazaceae, Phrymaceae, Paulowniaceae, and Orobanchaceae. Based on the second set of six chloroplast markers (atpB, matK, ndhF, rbcL, rps16, and trnL‐F) and two nuclear ribosomal regions (external transcribed spacer and internal transcribed spacer) for the analyses focusing on the LMPO clade, our results revealed that Cyrtandromoea was consistently nested within Phrymaceae, whereas Wightia was supported as sister to Phrymaceae by the chloroplast DNA dataset or sister to Paulowniaceae by the nuclear ribosomal DNA dataset. Morphological and anatomical evidence fully supports the inclusion of Cyrtandromoea in Phrymaceae, and an updated tribal classification is done for Phrymaceae with five tribes, that is, Cyrtandromoeeae Bo Li, Bing Liu, Su Liu & Y. H. Tan, trib. nov., Diplaceae Bo Li, Bing Liu, Su Liu & Y. H. Tan, trib. nov., Leucocarpeae, Mimuleae, and Phrymeae. The conflicting phylogenetic position of Wightia indicated by different genome markers results in difficulty placing the genus in either Phrymaceae or Paulowniaceae. Considering the distinct morphological differences between Wightia and other families in the LMPO clade, we here propose a new family, Wightiaceae Bo Li, Bing Liu, Su Liu & Y. H. Tan, fam. nov., to accommodate it, which is the 26th family recognized in Lamiales.  相似文献   

4.
As a step towards understanding the higher‐level phylogeny and evolutionary affinities of quadrifid noctuoid moths, we have undertaken the first large‐scale molecular phylogenetic analysis of the moth family Erebidae, including almost all subfamilies, as well as most tribes and subtribes. DNA sequence data for one mitochondrial gene (COI) and seven nuclear genes (EF‐1α, wingless, RpS5, IDH, MDH, GAPDH and CAD) were analysed for a total of 237 taxa, principally type genera of higher taxa. Data matrices (6407 bp in total) were analysed by parsimony with equal weighting and model‐based evolutionary methods (maximum likelihood), which revealed a well‐resolved skeleton phylogenetic hypothesis with 18 major lineages, which we treat here as subfamilies of Erebidae. We thus present a new phylogeny for Erebidae consisting of 18 moderate to strongly supported subfamilies: Scoliopteryginae, Rivulinae, Anobinae, Hypeninae, Lymantriinae, Pangraptinae, Herminiinae, Aganainae, Arctiinae, Calpinae, Hypocalinae, Eulepidotinae, Toxocampinae, Tinoliinae, Scolecocampinae, Hypenodinae, Boletobiinae and Erebinae. Where possible, each monophyletic lineage is diagnosed by autapomorphic morphological character states, and within each subfamily, monophyletic tribes and subtribes can be circumscribed, most of which can also be diagnosed by morphological apomorphies. All additional taxa sampled fell within one of the four previously recognized quadrifid families (mostly into Erebidae), which are now found to include two unusual monobasic taxa from New Guinea: Cocytiinae (now in Erebidae: Erebinae) and Eucocytiinae (now in Noctuidae: Pantheinae).  相似文献   

5.
Tiger beetles are a remarkable group that captivates amateur entomologists, taxonomists and evolutionary biologists alike. This diverse clade of beetles comprises about 2300 currently described species found across the globe. Despite the charisma and scientific interest of this lineage, remarkably few studies have examined its phylogenetic relationships with large taxon sampling. Prior phylogenetic studies have focused on relationships within cicindeline tribes or genera, and none of the studies have included sufficient taxon sampling to conclusively examine broad species patterns across the entire subfamily. Studies that have attempted to reconstruct higher‐level relationships of Cicindelinae have yielded conflicting results. Here, we present the first taxonomically comprehensive molecular phylogeny of Cicindelinae to date, with the goal of creating a framework for future studies focusing on this important insect lineage. We utilized all available published molecular data, generating a final concatenated dataset including 328 cicindeline species, with molecular data sampled from six protein‐coding gene fragments and three ribosomal gene fragments. Our maximum‐likelihood phylogenetic inferences recover Cicindelinae as sister to the wrinkled bark beetles of the subfamily Rhysodinae. This new phylogenetic hypothesis for Cicindelinae contradicts our current understanding of tiger beetle phylogenetic relationships, with several tribes, subtribes and genera being inferred as paraphyletic. Most notably, the tribe Manticorini is recovered nested within Platychilini including the genera Amblycheila Say, Omus Eschscholtz, Picnochile Motschulsky and Platychile Macleay. The tribe Megacephalini is recovered as paraphyletic due to the placement of the monophyletic subtribe Oxycheilina as sister to Cicindelini, whereas the monophyletic Megacephalina is inferred as sister to Oxycheilina, Cicindelini and Collyridini. The tribe Collyridini is paraphyletic with the subtribes Collyridina and Tricondylina in one clade, and Ctenostomina in a second one. The tribe Cicindelini is recovered as monophyletic although several genera are inferred as para‐ or polyphyletic. Our results provide a novel phylogenetic framework to revise the classification of tiger beetles and to encourage the generation of focused molecular datasets that will permit investigation of the evolutionary history of this lineage through space and time.  相似文献   

6.
Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S–23S ITS) and phycocyanin intergenic spacer (PC‐IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC‐IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC‐IGS and 16S–23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC‐IGS. Thus, PC‐IGS is a suitable marker, along with 16S–23S ITS for phylogenetic studies of cyanobacteria.  相似文献   

7.
Morphological and molecular studies demonstrate that the tribe Ptiloteae (Ceramiaceae, Ceramiales) is polyphyletic. The Ptiloteae, sensu stricto, occur only in the Northern Hemisphere and all Southern Hemisphere representatives belong in other tribes. Three genera (Euptilota, Seirospora, and Sciurothamnion) are transferred to the Euptiloteae Hommersand et Fredericq, trib. nov., and the Callithamnieae is revised to include three Ptilota‐like genera, Georgiella, Falklandiella, and Diapse, and two new genera. Heteroptilon Hommersand, gen. nov. is erected to receive Euptilota pappeana Kützing 1849 and Aglaothamnion rigidulum De Clerck, Bolton, Anderson et Coppejans 2004 from South Africa, and Aristoptilon Hommersand et W. A. Nelson, gen. nov. is established to receive Euptilota mooreana Lindauer 1949 from New Zealand. The principal difference between the Euptiloteae and the Callithamnieae is seen in the earliest stages after fertilization. The fertilized carpogonium enlarges and forms a pair of tube‐like protuberances directed toward the auxiliary cells that are cut off as connecting cells in the Euptiloteae, whereas in the Callithamnieae the carpogonium usually divides into two cells, each of which cuts off a small connecting cell that fuses with an adjacent enlarging auxiliary cell. Nuclei are terminal in spermatangia of the Euptiloteae, subtended by mucilaginous vesicles, and are medial in the Callithamnieae situated between apical and basal vesicles. The Euptiloteae and Callithamnieae (including the Ptilota‐like members) are each strongly supported in maximum‐likelihood tree topologies resulting from analyses of combined 18S rDNA, 28S rDNA, 16S rDNA, and rbcL data sets. Their sister relationship is also well supported.  相似文献   

8.
We perform phylogenetic analyses of the ‘polymorphic earless praying mantises’, a heterogeneous assemblage comprising c. 55% of mantodean diversity in the Neotropics. Bayesian and maximum‐likelihood were implemented on a DNA dataset of 9949 aligned nucleic acid characters comprising ten mitochondrial and nuclear genes. Our analyses largely resolved congruent relationships with high levels of support for higher‐level taxonomic groups, but revealed extensive inconsistencies between the resolved topology and morphology‐based classification systems. The polymorphic earless praying mantises, now granted superfamily status as the Acanthopoidea stat. n., comprises 8 families, 15 subfamilies and 18 tribes. Our newly revised organization required the following taxonomic changes: (i) Thespidae sensu n., including subfamilies Pseudopogonogastrinae subfam. n., Pseudomiopteryginae sensu n., Bantiinae subfam. n., Miobantiinae sensu n. and Thespinae sensu n. (tribes Musoniellini trib. n. and Thespini sensu n. ); (ii) Angelidae stat. n. et sensu n. ; (iii) Coptopterygidae stat. n. ; (iv) Liturgusidae sensu n. ; (v) Photinaidae stat. n., including Macromantinae stat. n., Cardiopterinae stat. n., Photiomantinae subfam. n. and Photinainae sensu n. (tribes Microphotinini trib. n., Orthoderellini stat. n. and Photinaini sensu n. ); (vi) Stenophyllidae stat. n. ; (vii) Acontistidae stat. n. ; and (viii) Acanthopidae sensu n. Our new system also resulted in the reassignment of various genera to new and existing higher‐level taxa, the exclusion of old world genera otherwise traditionally classified among the Thespidae, Liturgusidae and Angelidae, the confirmation of Stenophylla Westwood as member of this clade, and the revalidation of Paradiabantia Piza stat. r. We provide diagnoses for all suprageneric taxa using external morphological characters and male genitalia. A key to higher‐level groups is provided. We incorporate egg case structural variation as a novel approach for taxon delineation. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:29E37322‐30EB‐4F64‐80C9‐E2149B5B0195 .  相似文献   

9.
10.
The phylum Nematoda includes the genus Longidorus, a remarkable group of invertebrates that are polyphagous root‐ectoparasites of many plants including various agricultural crops and trees. Damage is caused by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Longidorus is complicated by phenotypic plasticity (intraspecific variability and minor interspecific differences) leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in southern Spain that detected 11 species of Longidorus. We developed a comparative study amongst these related species by considering morphological and morphometric features together with molecular data from nuclear ribosomal RNA genes [D2‐D3 expansion segments of large ribosomal subunit (28S), internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of our molecular and phylogenetic analyses confirmed the morphological hypotheses and allowed the delimitation and discrimination of three new species of the genus, described herein as Longidorus baeticus sp. nov. , Longidorus oleae sp. nov. , and Longidorus andalusicus sp. nov. , and eight known species (Longidorus alvegus, Longidorus crataegi, Longidorus fasciatus, Longidorus intermedius, Longidorus iuglandis, Longidorus magnus, Longidorus rubi, and Longidorus vineacola). Phylogenetic analyses of Longidorus spp. based on the three molecular markers resulted in a general consensus of these species grouping, as lineages were maintained for the majority of species (i.e. species with a conoid‐rounded lip region, amphidial fovea asymmetrically bilobed, female tail bluntly rounded), but not in some others (i.e. positions of L. crataegi, L. intermedius, and L. rubi were quite variable). To date, this is the most complete phylogenetic analysis for Longidorus and Paralongidorus species, with the highest number of species included. No correspondence between phylogenetic trees and morphological characters was found for ribosomal markers, with the exception of amphidial shape. Thus, polyphasic identification, based on integration of molecular analysis with morphology, is a tool beyond doubt in Longidorus identification. © 2013 The Linnean Society of London  相似文献   

11.
Phylogenetic relationships among major lineages of the leafhopper subfamily Iassinae were explored by analysing a dataset of 91 discrete morphological characters and DNA sequence data from nuclear 28S rDNA and histone H3 genes and mitochondrial 12S rDNA. Bayesian, maximum‐likelihood and maximum parsimony analyses yielded similar tree topologies that were well resolved with strong branch support except at the base of the tree, resulting in equivocal support for inclusion of Bythoniini as a tribe of Iassinae but strong support for the monophyly of Iassinae (excluding Bythoniini) and most previously recognized iassine tribes. Divergence times for recovered nodes were estimated using a Bayesian relaxed clock method with two fossil calibration points. The results suggest that the deepest divergences coincided with Gondwanan vicariant events but that more recent divergences resulted from long‐range dispersal and colonization. Biogeographical analyses suggest that the group most likely has a Neotropical origin. The following changes to the taxonomic classification are proposed: establishment of three new tribes, Batracomorphini trib.n. (based on type genus Batracomorphus Lewis), Hoplojassini trib.n. (based on type genus Hoplojassus Dietrich and including one other South American genus), Lipokrisnini trib.n. (based on type genus Lipokrisna Freytag and including two other endemic Caribbean genera); Krisnini is redefined to include only the Old World genera Krisna and Gessius; Iassini is redefined to include only the type genus and four endemic Afrotropical genera; Bascarrhinus Fowler and Platyhynna Berg, recently treated as genera incertae sedis, are placed in Hyalojassini; Thalattoscopus Kirkaldy is added to the previously monobasic tribe Trocnadini. Iassinae now includes 12 tribes, all of which appear to be monophyletic. Revised morphological diagnoses of the subfamily and each of the included tribes are provided and a key to tribes is also given. This published work has been registered in ZooBank, http://zoobank.org/urn:lsid:zoobank.org:pub:41295B68‐2DAB‐4C4F‐B260‐F7C054922173 .  相似文献   

12.
? Premise of the study: Verbenaceae consist of trees, shrubs, lianas, and herbs distributed primarily in Latin America, where they occur in a wide array of ecosystems. A second center of diversity exists in Africa. Competing morphology-based classifications that rely on different traits conflict in significant ways. A broad phylogenetic study was undertaken to assess those classifications and to examine the historical geography of the family. ? Methods: Analysis of seven chloroplast DNA regions for 109 species, representing all genera except one monotypic genus, provide inference into evolutionary relationships in Verbenaceae. ? Key results: The phylogeny shows that none of the traditional classifications reflect phylogenetic relationships very well. Eight clades are recognized as tribes (Casselieae, Citharexyleae, Duranteae, Lantaneae, Neospartoneae trib. nov., Petreeae, Priveae, and Verbeneae). Two genera, Dipyrena and Rhaphithamnus, remain unplaced in these larger clades. Petreeae, which consist of Neotropical lianas, are sister to the rest of the family. Lantaneae and Verbeneae together form a derived clade that comprises approximately two-thirds of the species in Verbenaceae. ? Conclusions: We present a new tribal classification, including one new tribe, Neospartoneae trib. nov., to accommodate three small genera of Argentine species (Diostea, Neosparton, and Lampaya). Phylogenetic inference suggests a South American origin for Verbenaceae, with approximately six colonization events having given rise to the Old World species.  相似文献   

13.
金缕梅亚科ITS序列分析及其系统学意义   总被引:4,自引:0,他引:4  
根据金缕梅亚科22属(活塞花属Embolanthera除外)代表种的nrDNA ITS序列数据构建了分子系统树。结合形态解剖证据,金缕梅亚科可分为3个族,即①Ji木族LoropetaleaeZhangtrib.nov.,包括蜡瓣花属Corylopsis、Maingaya、Matudaea、活塞花属、四药门花属Tetrathyrium和Ji木属L;②DicorypheaeZhangtrib.nov.,包括毛枝花属Trichocladus、Dicoryphe、Neostrearia、Ostrearia、Noahdendron、秀柱花属Eustigma、牛鼻栓属Fortunearia、山白树属Sinowilsonia、Molinadendron;③金缕梅族Hamamelideae,包括Fothergilla、金缕梅属Hamamelis、Parrotiopsis、水丝利属Sycopsis、Parrotia、银缕梅属Shaniodendron、蚊母树属Distylium和拟母树属Distyliopsis。  相似文献   

14.
This paper studies the phylogeny of the rove beetle subtribe Philonthina, to test its hypothetical monophyly and to unravel the evolutionary relationships of the subtribe and its included genus‐level taxa, with emphasis on the genus Pseudohesperus and its close‐allied relatives. The phylogenetic analyses are based on 105 adult morphological characters and 66 terminal taxa, i.e., all six members of Pseudohesperus, 51 species to represent 29 other genera of the subtribe Philonthina, seven species to represent the other six subtribes of Staphylinini, one species of the tribes Arrowinini, and one of the Platyprosopini. According to the phylogenetic results obtained, the genus Erichsonius should move out from the hitherto‐defined subtribe Philonthina and thus the monophyly of this taxon is challenged. The phylogenetic tree suggests that the genera Hesperus and Belonuchus might not be monophyletic, but the monophyly of Pseudohesperus and the sister relationship between it and Bisnius are well supported. The species‐level phylogenetic relationships of the genus Pseudohesperus reveal a clear pattern of species diversification that can be correlated well with the species' zoogeographical patterns. The paper also revises the taxonomy of Pseudohesperus and describes five new species from China: Pseudohesperus luteus Li & Zhou sp. nov. , Pseudohesperus pedatiformis Li & Zhou sp. nov. , Pseudohesperus tripartitus Li & Zhou sp. nov. , Pseudohesperus sparsipunctatus Li & Zhou sp. nov. , and Bisnius lubricus Li & Zhou sp. nov. An identification key to the species of Pseudohesperus is provided and their geographical distributions are mapped. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 163 , 679–722.  相似文献   

15.
在已有比较形态学研究基础上,本文选择了15个特征方面(外生殖器为主)的74个新征,以支序分析方法探讨了缘蝽科族(或亚科)的系统发育关系。结果表明棒缘蝽亚科、希缘蝽族、沟缘蝽族较为原始,与其余类群差异较大,缘蝽科的范围值得进一步研究;除Chariesterini外的缘蝽亚科是高等的缘蝽类群;Chariesterini似应从缘蝽亚科中独立出来;狭义巨缘蝽族以及萧的鼻缘蝽族、梭缘蝽族、昧缘蝽族、曼缘蝽族成立;拟黛缘蝽属、副黛缘蝽属、华黛缘蝽属、异黛缘蝽属应从”黛缘蝽族”中分别独立出来成立新族,即拟黛缘蝽族、副黛缘蝽族、华黛缘蝽族和异黛缘蝽族,以使原有的黛缘蝽族成为自然类群。  相似文献   

16.
The genus Xiphinema constitutes a large group of about 260 species of plant‐ectoparasitic nematodes. The group is polyphagous and distributed almost worldwide. Some of the species of this genus damage agricultural crops by direct feeding on root cells as well as by transmitting nepoviruses. Species discrimination in Xiphinema is complicated by phenotypic plasticity leading to potential misidentification. We conducted nematode surveys in cultivated and natural environments in Spain from 2009 to 2012, from which we identified 20 populations of Xiphinema species morphologically close to the virus‐vector nematode species Xiphinema diversicaudatum, three apomictic populations tentatively identified as species from the complex Xiphinema aceri‐pyrenaicum group, and one population morphologically different from all others that is characterized by a female tail elongate to conical and absence of uterine differentiation. We developed comparative multivariate analyses for these related species by using morphological and morphometrical features together with molecular data from nuclear ribosomal DNA genes [D2‐D3 expansion segments of large ribosomal subunit 28S, internal transcribed spacer 1 (ITS1), and partial small ribosomal subunit (18S)]. The results of multivariate, molecular, and phylogenetic analysis confirmed the morphological hypotheses and allowed the delimitation and discrimination of two new species in the genus described herein as Xiphinema baetica sp. nov. and Xiphinema turdetanensis sp. nov. , and ten known species: Xiphinema adenohystherum, Xiphinema belmontense, Xiphinema cohni, Xiphinema coxi europaeum, Xiphinema gersoni, Xiphinema hispidum, Xiphinema italiae, Xiphinema lupini, Xiphinema nuragicum, and Xiphinema turcicum. Multivariate analyses based on quantitative and qualitative characters and phylogenetic relationships of Xiphinema spp. based on the three molecular ribosomal markers resulted in a partial consensus of these species grouping as nematode populations were maintained for the majority of morphospecies groups (e.g. morphospecies groups 5 and 6), but not in some others (e.g. position of Xiphinema granatum), demonstrating the usefulness of these analyses for helping in the diagnosis and identification of Xiphinema spp. The clade topology of phylogenetic trees of D2‐D3 and partial 18S regions in this study were congruent in supporting the polyphyletic status of some characters, such as the female tail shape and the degree of development of the genital system in species with both genital branches equally developed. This is the most complete phylogenetic study for Xiphinema non‐americanum‐group species. Agreement between phylogenetic trees and some morphological characters (uterine spines, pseudo‐Z organ, and tail shape) was tested by reconstruction of their histories on rDNA‐based trees using parsimony and Bayesian approaches. Thus, integrative taxonomy, based on the combination of multivariate, molecular analyses with morphology, constitutes a new insight into the identification of Xiphinema species. © 2013 The Linnean Society of London  相似文献   

17.
Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark‐spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter‐ and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless‐modified Echinosteliales. We discuss possible evolutionary pathways in dark‐spored Myxomycetes and propose a taxonomic update.  相似文献   

18.
A phylogenetic analysis of Hormaphidinae is presented based on a total‐evidence approach. Four genes (two mitochondrial, COI and CytB, and two nuclear, EF‐1α and LWO) are combined with 65 morphological and seven biological characters. Sixty‐three hormaphidine species representing three tribes and 36 genera as well as nine outgroups are included. Parsimony and model‐based approaches are used, and several support values and implied weighting schemes are explored to assess clade stability. The monophyly of Hormaphidinae and Nipponaphidini is supported, but Cerataphidini and Hormaphidini are not recovered as monophyletic. Based on the parsimony hypothesis from the total‐evidence analysis, the phylogenetic relationships within Hormaphidinae are discussed. Cerataphidini is re‐delimited to exclude Doraphis and Tsugaphis, and Hormaphidini is redefined to include Doraphis. Ceratocallis Qiao & Zhang is established as a junior synonym of Ceratoglyphina van der Goot, syn. nov. Lithoaphis quercisucta Qiao, Guo & Zhang is transferred to the genus Neohormaphis Noordam as Neohormaphis quercisucta (Qiao, Guo & Zhang) comb. nov. Galls have evolved independently within three tribes of Hormaphidinae. In Cerataphidini, pseudogalls are ancestral, both single‐cavity and multiple‐cavity galls have evolved once, and galls appear to have evolved towards greater complexity. Galling on secondary hosts has evolved twice in hormaphidines.  相似文献   

19.
Despite recent progress on the higher‐level relationships of Cichlidae and its Indian, Malagasy, and Greater Antillean components, conflict and uncertainty remain within the species‐rich African, South American, and Middle American assemblages. Herein, we combine morphological and nucleotide characters from the mitochondrial large ribosomal subunit, cytochrome c oxidase subunit I, NADH dehydrogenase four, and cytochrome b genes and from the nuclear histone H3, recombination activating gene two, Tmo‐4C4, Tmo‐M27, and ribosomal S7 loci to analyse relationships within the Neotropical cichlid subfamily Cichlinae. The simultaneous analysis of 6309 characters for 90 terminals, including representatives of all major cichlid lineages and all Neotropical genera, resulted in the first well‐supported and resolved generic‐level phylogeny for Neotropical cichlids. The Neotropical subfamily Cichlinae was recovered as monophyletic and partitioned into seven tribes: Astronotini, Chaetobranchini, Cichlasomatini, Cichlini, Geophagini, Heroini, and Retroculini. Chaetobranchini + Geophagini (including the “crenicichlines”) was resolved as the sister group of Heroini + Cichlasomatini (including Acaronia). The monogeneric Astronotini was recovered as the sister group of these four tribes. Finally, a clade composed of Cichlini + Retroculini was resolved as the sister group to all other cichlines. The analysis included the recently described ?Proterocara argentina, the oldest known cichlid fossil (Eocene), which was placed in an apical position within Geophagini, further supporting a Gondwanan origin for Cichlidae. These phylogenetic results were used as the basis for generating a monophyletic cichline taxonomy. © The Willi Hennig Society 2008.  相似文献   

20.
Abstract. Mealybugs (Hemiptera: Pseudococcidae) are small, plant‐sucking insects which comprise the second largest family of scale insects (Coccoidea). Relationships among many pseudococcid genera are poorly known and there is no stable higher level classification. Here we review previous hypotheses on relationships and classification and present the first comprehensive phylogenetic study of the Pseudococcidae based on analysis of nucleotide sequence data. We used three nuclear genes, comprising two noncontiguous fragments of elongation factor 1α (EF‐1α 5′ and EF‐1α 3′), fragments of the D2 and D10 expansion regions of the large subunit ribosomal DNA gene (28S), and a region of the small subunit ribosomal DNA gene (18S). We sampled sixty‐four species of mealybug belonging to thirty‐five genera and representing each of the five subfamilies which had been recognized previously, and included four species of Puto (Putoidae) and one species each of Aclerda (Aclerdidae) and Icerya (Margarodidae), using Icerya as the most distant outgroup. A combined analysis of all data found three major clades of mealybugs which we equate to the subfamilies Pseudococcinae, Phenacoccinae and Rhizoecinae. Within Pseudococcinae, we recognize the tribes Pseudococcini (for Pseudococcus, Dysmicoccus, Trionymus and a few smaller genera), Planococcini (for Planococcus and possibly Planococcoides) and Trabutinini (represented by a diverse range of genera, including Amonostherium, Antonina, Balanococcus, Nipaecoccus and non‐African Paracoccus), as well as the Ferrisia group (for Ferrisia and Anisococcus), some ungrouped African taxa (Grewiacoccus, Paracoccus, Paraputo and Vryburgia), Chaetococcus bambusae and Maconellicoccus. The ‘legless’ mealybugs Antonina and Chaetococcus were not closely related and thus we confirmed that the Sphaerococcinae as presently constituted is polyphyletic. In our analyses, the subfamily Phenacoccinae was represented by just Phenacoccus and Heliococcus. The hypogeic mealybugs of the Rhizoecinae usually formed a monophyletic group sister to all other taxa. Our molecular data also suggest that the genera Pseudococcus, Dysmicoccus, Nipaecoccus and Paracoccus are not monophyletic (probably polyphyletic) and that Phenacoccus may be paraphyletic, but further sampling of species and genes is required. We compare our phylogenetic results with published information on the intracellular endosymbionts of mealybugs and hypothesize that the subfamily Pseudococcinae may be characterized by the possession of β‐Proteobacteria (primary endosymbionts) capable of intracellular symbiosis with γ‐Proteobacteria (secondary endosymbionts). Furthermore, our data suggest that the identities of the secondary endosymbionts may be useful in inferring mealybug relationships. Finally, cloning polymerase chain reaction products showed that paralogous copies of EF‐1α were present in at least three taxa. Unlike the situation in Apis and Drosophila, the paralogues could not be distinguished by either the presence/absence or position of an intron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号