首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies with soluble enzyme preparations from sage (Salvia officinalis) demonstrated that the monoterpene ketone (+)-camphor was synthesized by the cyclization of neryl pyrophosphate to (+)-bornyl pyrophosphate followed by hydrolysis of this unusual intermediate to (+)-borneol and then oxidation of the alcohol to camphor (R. Croteau, and F. Karp, 1977, Arch. Biochem. Biophys.184, 77–86). Preliminary investigation of the (+)-bornyl pyrophosphate synthetase in crude preparations indicated that both neryl pyrophosphate and geranyl pyrophosphate could be cyclized to (+)-bornyl pyrophosphate, but the presence of high levels of phosphatases in the extract prevented an accurate assessment of substrate specificity. The competing phosphatases were removed by combination of gel filtration on Sephadex G-150, chromatography on hydroxylapatite, and chromatography on O-(diethylaminoethyl)-cellulose. In these fractionation steps, activities for the cyclization of neryl pyrophosphate and geranyl pyrophosphate to bornyl pyrophosphate were coincident, and on the removal of competing phosphatases, the synthetase was shown to prefer geranyl pyrophosphate as substrate (VKm for geranyl pyrophosphate was 20-fold that of neryl pyrophosphate). No interconversion of geranyl and neryl pyrophosphates was detected. The partially purified bornyl pyrophosphate synthetase had an apparent molecular weight of 95,000, and required Mg2+ for catalytic activity (Km for Mg2+ ~ 3.5 mm). Mn2+ and other divalent cations were ineffective in promoting the formation of bornyl pyrophosphate. The enzyme exhibited a pH optimum at 6.2 and was strongly inhibited by both p-hydroxymercuribenzoate and diisopropylfluorophosphate. Bornyl pyrophosphate synthetase is the first monoterpene synthetase to be isolated free from competing phosphatases, and the first to show a strong preference for geranyl pyrophosphate as substrate. A mechanism for the cyclization of geranyl pyrophosphate to bornyl pyrophosphate is proposed.  相似文献   

2.
A soluble enzyme preparation from the leaves of fennel (Foeniculum vulgare M.) has been shown to catalyze the cation-dependent cyclization of both geranyl pyrophosphate and neryl pyrophosphate to the bicyclic rearranged monoterpene l-endo-fenchol (R. Croteau, M. Felton, and R. Ronald, 1980 Arch. Biochem. Biophys.200, 524–533). To examine the possible presence of free intermediates between the acyclic precursors and fenchol, and to remove competing cyclase and pyrophosphatase activities, the soluble preparation was partially purified by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150 and ion exchange chromatography on O-diethylaminoethyl-cellulose. Activities for the cyclization of geranyl pyrophosphate and neryl pyrophosphate to fenchol were coincident on Chromatographic fractionation suggesting that the same enzyme was capable of cyclizing both acyclic substrates. No interconversion of the acyclic precursors was detected. Although bornyl pyrophosphate is a free intermediate in the biosynthesis of the related bicyclic monoterpenol borneol, both protein fractionation and isotopic dilution experiments ruled out endo-fenchyl pyrophosphate as a free intermediate in fenchol biosynthesis. Similarly, while construction of the fenchane skeleton was demonstrated to involve the rearrangement of an intermediate pinane skeleton, isotopic dilution experiments ruled out both optical antipodes of α-pinene, β-pinene, cis-2-pinanol, trans-2-pinanol, and the corresponding 2-pinyl pyrophosphates as free intermediates of the enzyme-catalyzed reaction. Furthermore, exhaustive search of the enzymatic reaction products provided no evidence to suggest the involvement of any free intermediate between the acyclic precursor and fenchol. The endo-fenchol synthetase has an apparent molecular weight of 60,000, shows a pH optimum near 7.0, and requires Mn2+ (1 mm) for catalytic activity. Co2+ can partially substitute for Mn2+, but other divalent cations are ineffective. The partially purified synthetase is inhibited by p-hydroxymercuribenzoate and by phenylglyoxal, and it exhibits a preference for geranyl pyrophosphate over neryl pyrophosphate as substrate. An integrated scheme is proposed for the cyclization and rearrangement catalyzed by fenchol synthetase.  相似文献   

3.
A soluble enzyme preparation from the flavedo of Citrus limonum transforms [1-3H1]neryl pyrophosphate or [1-3H1]geranyl pyrophosphate into β-pinene, sabinene, α-pinene, and limonene. The enzyme has been partially purified and stabilized by precipitation with polyethyleneglycol. The enzymic cyclization requires the presence of Mn2+, which cannot be replaced with Mg2+. The addition of reagents containing sulfhydryl groups is essential for optimal activity. Allylic C10 monophosphates do not act as substrates, but they inhibit hydrocarbon formation. Inorganic pyrophosphate has a similar inhibitory effect. No interconversion of neryl and geranyl pyrophosphate has been observed. Possible pathways for the enzymic cyclization reactions are proposed.  相似文献   

4.
Leucoplasts of immature calamondin and satsuma fruits were incubated with [1-14C] isopentenyl pyrophosphate under various conditions. Optimal incorporation of the tracer into geranyl pyrophosphate and monoterpene hydrocarbons occurred in the presence of exogenous dimethylallyl pyrophosphate and Mn2+ which was more effective than Mg2+. The dependence of dimethylallyl pyrophosphate showed that about 10 moles were required for 1 mole of isopentenyl pyrophosphate for the best recovery in monoterpene hydrocarbon biosynthesis. A time-course incorporation of isopentenyl pyrophosphate revealed that the C10 hydrocarbon elaboration was dependent on the geranyl pyrophosphate production and at no time neryl pyrophosphate was synthesized by leucoplasts. The amount of labelled farnesyl pyrophosphate was rather low whatever the conditions used in the experiments and sesquiterpene hydrocarbon biosynthesis was never observed.Abbreviations DMAPP dimethylallyl pyrophosphate - FPP farnesyl pyrophosphate - GPP geranyl pyrophosphate - IPP isopentenyl pyrophosphate - LPP linalyl pyrophosphate - NPP neryl pyrophosphate  相似文献   

5.
Soluble enzyme preparations from Salvia officinalis convert the acyclic precursor [1-3H2,G-14C]geranyl pyrophosphate to cyclic monoterpenes of the pinane (α-pinene,β-pinene), isocamphane (camphene), p-menthane (limonene,1,8-cineole), and bornane (bornyl pyrophosphate, determined as borneol) type without loss of tritium, and without significant conversion to other free acyclic intermediates. Similarly, [1-3H2,G-14C]geraniol is converted in intact S. officinalis leaves to the cyclic monoterpene olefins and 1,8-cineole, as well as to isothujone and camphor, without loss of tritium from C(1). These results clearly eliminate transcis isomerization of geranyl pyrophosphate to neryl pyrophosphate via aldehyde intermediates prior to cyclization, and they support a scheme whereby the trans precursor is cyclized directly by way of a bound linaloyl intermediate.  相似文献   

6.
Soluble enzyme preparations from sage (Salvia officinalis) leaves catalyze the hydrolysis of (+)-bornyl pyrophosphate to (+)-borneol, which is an essential step in the biosynthesis of the cyclic monoterpene (+)-camphor [(1R,4R)-bornan-2-one] in this tissue. Chromatography of the preparation on Sephadex G-150 allowed the separation of two regions of bornyl pyrophosphate hydrolase activity. One region was further separated into a pyrophosphate hydrolase and a monophosphate hydrolase by chromatography on hydroxylapatite, but the other contained pyrophosphate and monophosphate hydrolase activities which were inseparable by this or any other chromatographic technique tested. Each phosphatase and pyrophosphatase activity was characterized with respect to molecular weight, pH optimum, response to inhibitors, Km for bornyl phosphate or bornyl pyrophosphate, and substrate specificity, and each activity was distinctly different with regard to these properties. One pyrophosphatase activity was specific for pyrophosphate esters of sterically hindered monoterpenols such as bornyl pyrophosphate. The other preferred pyrophosphate esters of primary allylic alcohols such as geranyl pyrophosphate and neryl pyrophosphate, which are precursors of cyclic monoterpenes, and it hydrolyzed geranyl pyrophosphate at faster rates than neryl pyrophosphate. The monophosphate hydrolase activities were similar in substrate specificity, showing a preference for phosphate esters of primary allylic alcohols. The terpenyl pyrophosphate hydrolase exhibiting specificity for bornyl pyrophosphate may be involved in camphor biosynthesis in vivo, while the terpenyl pyrophosphate hydrolase more specific for geranyl pyrophosphate was shown to be a source of potential interference in studies on monoterpene cyclization processes.  相似文献   

7.
When inhibitors of enzymes that utilize isoprenoid pyrophosphates are based on the natural substrates, a significant challenge can be to achieve selective inhibition of a specific enzyme. One element in the design process is the stereochemistry of the isoprenoid olefins. We recently reported preparation of a series of isoprenoid triazoles as potential inhibitors of geranylgeranyl transferase II but these compounds were obtained as a mixture of olefin isomers. We now have accomplished the stereoselective synthesis of these triazoles through the use of epoxy azides for the cycloaddition reaction followed by regeneration of the desired olefin. Both geranyl and neryl derivatives have been prepared as single olefin isomers through parallel reaction sequences. The products were assayed against multiple enzymes as well as in cell culture studies and surprisingly a Z-olefin isomer was found to be a potent and selective inhibitor of geranylgeranyl diphosphate synthase.  相似文献   

8.
Undecaprenyl pyrophosphate synthetase was partially purified from Lactobacillus plantarum by DEAE-cellulose, hydroxyapatite, and Sephadex G-100 chromatography in Triton X-100. The enzyme has a molecular weight between 53,000 and 60,000. The enzyme demonstrated a fivefold preference for farnesyl pyrophosphate rather than geranyl pyrophosphate as the allylic cosubstrate, whereas dimethylallyl pyrophosphate was not effective as a substrate. Polyprenyl pyrophosphates obtained using either farnesyl or geranyl pyrophosphate as cosubstrate were chromatographically identical. Hydrolysis of these polyprenyl pyrophosphates with either a yeast or liver phosphatase preparation yielded undecaprenol as the major product. Incorporation of radioactive label from mixtures of Δ3-[1-14C]isopentenyl pyrophosphate and Δ3-2R-[2-3H]isopentenyl pyrophosphate into enzymic product indicated that each isoprene unit added to the allylic pyrophosphate substrate has a cis configuration about the newly formed double bond. The removal of detergent from enzyme solutions resulted in a parallel loss in enzyme activity when analyzed with either farnesyl or geranyl pyrophosphate as cosubstrates. Enzymic activity was restored on addition of Triton X-100 or deoxycholate. The enzyme exhibited a pH-activity profile with optima at pH 7.5 and 10.2. It also demonstrated a divalent cation requirement, with Mg2+, Mn2+, Zn2+, and Co2+ exhibiting comparable activities.  相似文献   

9.
Previous studies with thyme (Thymus vulgaris L.) leaf slices indicated that γ-terpinene (1,4-p-menthadiene) is the precursor of the aromatic monoterpenes p-cymene (4-isopropyl toluene) and thymol (5-methyl-2-isopropyl phenol) (Poulose, A. and Croteau, R. (1978) Arch. Biochem. Biophys.187, 307–314). A 105,000g supernatant obtained from an extract of young thyme leaves catalyzed the cyclization of both [1-3H]neryl pyrophosphate and [1-3H]geranyl pyrophosphate to γ-[3-3H]terpinene. No evidence for the interconversion of the acyclic precursors was obtained, and isotopic dilution experiments suggested that γ-terpinene was synthesized directly from these acyclic precursors without the involvement of any free intermediates. Competing phosphatase activity in the soluble preparation was removed by ammonium sulfate fractionation followed by gel filtration on Sephadex G-150. In these fractionation steps, γ-terpinene synthetase activity co-purified with small amounts of α-thujene (1-isopropyl-4-methylbicyclo[3.1.0]-hex-3-ene) and α-terpineol (p-menth-1-en-8-ol) synthetase activities, and these three activities could not be resolved by subsequent hydroxylapatite chromatography, anion exchange chromatography on QAE-Sephadex, or affinity chromatography on neroic acid-substituted agarose. All the enzymatic products were identified by radio chromatography and by the synthesis of derivatives followed by radio chromatography or crystallization to constant specific activity. γ-Terpinene synthetase has an apparent molecular weight of 96,000, shows a pH optimum at about 6.8, and requires Mg2+ for catalytic activity. Mn2+ can partially substitute for Mg2+, but other divalent cations are ineffective. Estimated values of V and Km are 3.5 nmol/h/mg and 9 μm, respectively, for neryl pyrophosphate, and 3.0 nmol/h/mg and 14 μm, respectively, for geranyl pyrophosphate. Enzymic activity is inhibited by sulfhydryl-directed reagents and inorganic pyrophosphate, but not by γ-terpinene, p-cymene, or thymol. Based on the specific location of tritium in the product, a mechanism is proposed which involves the cyclization of the acyclic precursor, loss of a proton from C5 to form the Δ4 double bond, and a 1,2-hydride shift from C4 to C8 to give γ-terpinene. A similar mechanism, but with loss of the proton from C6 and the formation of a cyclopropane ring, would yield α-thujene.  相似文献   

10.
A cell-free system prepared from peppermint (Mentha piperita L.) shoot tips catalyzed the cyclization of neryl pyrophosphate to α-terpineol. Cyclization could be demonstrated in the absence of added cofactors, but addition of NaF inhibited competing phosphatase/pyrophosphatase activity, resulting in much higher levels of α-terpineol formation. Under certain conditions cyclization was stimulated by Mg++. Similar enzyme preparations were obtained from spearmint (Mentha spicata L.) leaves and carrot (Daucus carota L.) storage organ. The cyclization of neryl pyrophosphate to α-terpineol appears to be a key reaction in the biosynthesis of cyclohexanoid monoterpenes.  相似文献   

11.
《Journal of phycology》2001,37(Z3):54-54
Wise, M. L.1, Rorrer, G. L.2, Polzin, J. J.2, Croteau, R. B.1 1Institute of Biological Chemistry, Washington State University, Pullman, WA. 99164 USA; 2 Department of Chemical Engineering, Oregon State University, Corvallis, OR. 96331USA A monoterpene synthase from suspension cultures of the marine red alga Ochtodes secundiramea is shown to biosynthesize myrcene from geranyl diphosphate (GPP) using cell free extracts. This is the first in vitro characterization of a monoterpene synthase from a marine organism. Myrcene is the likely progenitor of the unusual halogenated monoterpenes characteristic of this marine alga and, as such, represents a key step in the biosynthetic pathway. Based on mechanistic considerations from reaction with the biologically relevant substrate GPP, as well as neryl diphosphate (the cis isomer of GPP) and linalyl diphosphate (LPP), the enzyme appears incapable of catalyzing the isomerization of GPP to LPP, a mechanistic feature of most terrestrial monoterpene synthases, perhaps reflecting its evolutionarily ancient origin. The ability to assay and quantitatively monitor the expression of this enzyme in suspension cultures, under strictly defined growth conditions, presents an unparalleled opportunity to delineate, at the molecular level, factors eliciting the biosynthesis of this class of secondary metabolites, to evaluate the metabolic pathway leading to halogenated monoterpenes and to investigate their role in the chemical ecology of marine algae.  相似文献   

12.
Recently it was shown that monoterpenes in tomato trichomes (Solanum lycopersicum) are synthesized by phellandrene synthase 1 (PHS1) from the non-canonical substrate neryl diphosphate (NPP), the cis-isomer of geranyl diphosphate (GPP). As PHS1 accepts both NPP and GPP substrates forming different monoterpenes, it was overexpressed in tomato fruits to test if NPP is also available in a tissue highly active in carotenoid production. However, transgenic fruits overexpressing PHS1 produced only small amounts of GPP-derived PHS1 monoterpene products, indicating the absence of endogenous NPP. Therefore, NPP formation was achieved by diverting the metabolic flux from carotenoids via expression of tomato neryl diphosphate synthase 1 (NDPS1). NDPS1 transgenic fruits produced NPP-derived monoterpenes, including nerol, neral and geranial, while displaying reduced lycopene content. NDPS1 co-expression with PHS1 resulted in a monoterpene blend, including β-phellandrene, similar to that produced from NPP by PHS1 in vitro and in trichomes. Unexpectedly, PHS1×NDPS1 fruits showed recovery of lycopene levels compared to NDPS1 fruits, suggesting that redirection of metabolic flux is only partially responsible for the reduction in carotenoids. In vitro assays demonstrated that NPP serves as an inhibitor of geranylgeranyl diphosphate synthase, thus its consumption by PHS1 leads to recovery of lycopene levels. Monoterpenes produced in PHS1×NDPS1 fruits contributed to direct plant defense negatively affecting feeding behavior of the herbivore Helicoverpa zea and displaying antifungal activity against Botrytis cinerea. These results show that NPP-derived terpenoids can be produced in plant tissues; however, NPP has to be consumed to avoid negative impacts on plant metabolism.  相似文献   

13.
14.
A partially purified enzyme (carbocyclase) from the flavedo of Citrus limonum formed α-pinene, β-pinene, limonene, and γ-terpinene from geranyl pyrophosphate (GPP) and neryl pyrophosphate. The maximum specific activities obtained were 7.0 and 3.6 nmol/ min/mg, respectively. Cross-inhibition by the two substrates were observed and the ability to utilize neryl pyrophosphate was almost completely lost with aging. Citronellyl pyrophosphate and dimethylallyl pyrophosphate were the most effective inhibitors of carbocyclase. Isopentenyl pyrophosphate, the monophosphate esters of nerol and geraniol, as well as inorganic pyrophosphate were much less effective inhibitors. The enzyme had an absolute requirement for Mn2+. It could be replaced with about 2% effectiveness by Mg2+ and Co2+. Kinetic studies showed that the observed reaction rate correlates with the calculated concentration of the GPP (Mn2+)2 species. Previous evidence with nonenzymatic reactions and the results presented support the view that the mechanism of carbocyclase may be the intramolecular analog of prenyltransferase.  相似文献   

15.
Secretory cells were isolated from the monoterpene-producing glandular trichomes (peltate form) of peppermint as clusters of eight cells each. These isolated structures were shown to be non-specifically permeable to low-molecular-weight, water-soluble cofactors and substrates. Short incubation periods with the polar dye Lucifer yellow iodoacetamide (Mr=660) resulted in a uniform staining of the cytoplasm, with exclusion of the dye from the vacuole. The molecular-weight exclusion limit for this permeability was shown to be less than approx. 1800, based on exclusion of fluorescein-conjugated dextran (Mr 1800). Intact secretory cell clusters very efficiently incorporated [3H]geranyl pyrophosphate into monoterpenes. The addition of exogenous cofactors and redox substrates affected the distribution of monoterpenes synthesized from [3H]geranyl pyrophosphate, demonstrating that the cell clusters were permeable to these compounds and that the levels of endogenous cofactors and redox substrates were depleted in the isolated cells. When provided with the appropriate cofactors, such as NADPH, NAD+, ATP, ADP and coenzyme A, the isolated secretory cell clusters incorporated [14C]sucrose into monoterpenes, indicating that these structures are capable of the de-novo biosynthesis of monoterpenes from a primary carbon source, and that they maintain a high degree of metabolic competence in spite of their permeable nature.Abbreviations GLC gas liquid chromatography - LSCM laser scanning confocal microscopy - LY-IA Lucifer yellow iodoacetamide This investigation was supported in part by U.S. Department of Energy Grant DE-FG0688ER13869 and by Project 0268 from the Washington State University Agricultural Research Center. Light microscopy was carried out in the Plant Biology Light Microscopy and Image Analysis Facility (WSU) funded by the National Science Foundation (DIR9016138). We thank Greg Wichelns for growing the plants and Stephen Pfeiffer (BioRad Microsciences Division, Cambridge, Mass, USA), for help acquiring the confocal images.  相似文献   

16.
A partially purified enzyme preparation from the flavedo of Citrus limonum utilized [1-3H]linalyl pyrophosphate as a substrate for cyclic terpene hydrocarbon formation more efficiently than the pyrophosphates of nerol and geraniol. The products formed from all three substrates are α-pinene, β-pinene, limonene, and γ-terpinene. Neryl and geranyl pyrophosphate inhibit the formation of these products from linalyl pyrophosphate. No free linalyl pyrophosphate could be detected during the enzymatic formation of cyclic terpene hydrocarbons from geranyl pyrophosphate. Mn2+ catalyzes the nonenzymatic solvolysis of linalyl pyrophosphate, forming myrcene and ocymenes and no bicyclic hydrocarbons. Linalyl pyrophosphate is a sterically plausible precursor of cyclic hydrocarbons, but the present data support only its role as an alternative substrate and not as an obligatory free intermediate in terpene biosynthesis.  相似文献   

17.
Enzymes from Salvia officinalis and Tanacetum vulgare leaf epidermis catalyze the conversion of the acyclic precursor geranyl pyrophosphate to the cyclic monoterpenes (+)- and (-)-bornyl pyrophosphate, respectively. The antipodal cyclizations are considered to proceed by the initial isomerization of the substrate to the respective bound tertiary allylic intermediates (-)-(3R)- and (+)-(3S)-linalyl pyrophosphate. [(3R)-8,9-14C,(3RS)-1E-3H] Linalyl pyrophosphate (3H:14C = 5.22) was tested as a substrate with the cyclases from both sources to determine the configuration of the cyclizing intermediate. This substrate yielded (-)-bornyl pyrophosphate with 3H:14C ratio greater than 31, indicating specific utilization of (+)-(3S)-linalyl pyrophosphate as predicted. With the (+)-bornyl pyrophosphate cyclase, the 3H:14C ratio of the product was about 4.16, indicating a preference for the (-)-(3R)-enantiomer, but the ability also to utilize (+)-(3S)-linalyl pyrophosphate. (3R)- and (3S)-[1Z-3H]Linalyl pyrophosphate were separately compared to the achiral precursors [1-3H] geranyl pyrophosphate and [1-3H]neryl pyrophosphate (cis-isomer) as substrates for the cyclizations. All functional precursors afforded optically pure (-)-(1S,4S)-bornyl pyrophosphate with the T. vulgare-derived cyclase (as determined by chromatographic separation of diastereomeric ketals of the derived ketone camphor), and (+)-(3S)-linalyl pyrophosphate was the preferred substrate. With the (+)-bornyl pyrophosphate cyclase from S. officinalis, geranyl, neryl, and (-)-(3R)-linalyl pyrophosphates gave the expected (+)-(1R,4R)-stereoisomer as the sole product, and (-)-(3R)-linalyl pyrophosphate was the preferred substrate. However, (3S)-linalyl pyrophosphate yielded (-)-(1S,4S)-bornyl pyrophosphate, albeit at lower rates, indicating the ability of this enzyme to catalyze the anomalous enantiomeric cyclization.  相似文献   

18.
Prenyltransferase (EC 2.5.1.1; assayed as farnesyl pyrophosphate synthetase)was purified 106-fold from an homogenate of 3-day-old seedlings of Pisum sativum. Some of the properties of the purified enzyme were determined and these differed in several significant respects from those reported for preparations from other sources, e.g. the apparent MW was 96000 ± 4000 and the preparation could be dissociated into two subunits of MW 45000 ± 3000. The total activity of the extractable enzyme went through a sharp maximum (in the range 1 to 28 days) 3 days after germination. Farnesyl pyrophosphate was formed in cell-free extracts of peas from either isopentenyl pyrophosphate alone, or this together with geranyl pyrophosphate (optimum yields 1.2 and 10% respectively). Use of [1-14C]- and [4-14C]-isopentenyl pyrophosphates as the sole substrates and degradation of the products showed that the crude extracts contained a pool of the biogenetic equivalent of 3,3-dimethylallyl pyrophosphate. No analogous pool of geranyl pyrophosphate could be detected.  相似文献   

19.
A protein fraction capable of catalysing the formation of all four geometrical isomers of farnesyl pyrophosphate has been isolated from cotton roots. Using neryl pyrophosphate and isopentenyl pyrophosphate as substrates the product was found to be cis-cis farnesyl pyrophosphate and possibly trans-cis farnesyl pyrophosphate. Geranyl pyrophosphate and isopentenyl pyrophosphate as substrates yielded trans-trans and possible cis-trans farnesyl pyrophosphate. During purification of the active protein fraction, the ratio of utilization of geranyl pyrophosphate and neryl pyrophosphate did not remain constant, indicating that two enzymes may be involved, one specific for cis C10-substrate and the other for trans C10-substrate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号