首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
THE intracellular concentration of adenosine cyclic 3′ : 5′-monophosphate (cAMP) has been shown to increase in cells reaching confluency, that is, under conditions of contact inhibition and it has been proposed that contact inhibition may be mediated by the activation of adenyl cyclase1. Because loss of contact inhibition is one of the important characteristics of transformed cells, it is possible that variations in the level of cAMP play a crucial role in events associated with cell transformation. Growth of tumorigenic cell lines has been shown to be inhibited (80–90%) in the presence of cAMP1 and adenyl cyclase activity has been found to be much reduced in polyoma transformed cells2. BHK21 cells have been shown to be arrested in the G1-phase of the cell cycle after growth for 48 h in medium supplemented with serum at a low concentration (0.5%)3. BHK21 cells are non-permissive for infection with oncogenic adenovirus type 12 (Ad 12). Infection of a G1-arrested cell population with Ad12 results in induction of cellular DNA replication4, early virus mRNA is transcribed5, infected cells synthesize T antigen6, but no viral DNA synthesis7 late mRNA8, or viral capsid proteins8 can be detected after infection. Infection induces the cells to enter mitosis but the chromosomes break down and most of the cells die6. As a result, DNA synthesis is limited to a single burst4,6. Here we report the effects of dibutyryl-cAMP on induction of cellular DNA synthesis in G1-arrested BHK21 cells by infection with Adl2 or serum stimulation.  相似文献   

2.
Effect of cell physiological state on infection by rat virus   总被引:20,自引:18,他引:2       下载免费PDF全文
Infection by rat virus has been studied in cultures of rat embryo cells to evaluate the Margolis-Kilham hypothesis that the virus preferentially infects tissues with actively dividing cells. An enhancement of infection was seen in cultures infected 10 hr after fresh medium was added as compared to infection of stationary cultures (infected before addition of fresh medium). Since addition of fresh medium stimulates deoxyribonucleic acid (DNA) synthesis, the number of cells per culture synthesizing DNA at the time of infection was compared with the proportion of cells which synthesized viral protein. Cells were infected before the medium change and 10 or 24 hr after the medium change and were pulse-labeled with 3H-thymidine at the time virus was added. The cells were allowed to initiate viral protein synthesis before they were fixed and stained with fluorescein-conjugated anti-rat virus serum. Fluorescence microscopy permitted both labels to be counted simultaneouly and showed that the greatest proportion of cells synthesizing viral protein were those which had incorporated 3H-thymidine at the time of infection.  相似文献   

3.
A sensitive assay for quantitating ‘unscheduled DNA synthesis’ (repair synthesis) in transformed human amnion (AV3) cells has been developed. The combined use of hydroxyurea and arginine-deficient culture medium enabled the detection of 10–20 fold increases in ‘unscheduled DNA synthesis’ after treatment with N-acetoxy-2-acetylaminofluorene or ultraviolet light. The technique allows the detection of ‘DNA repair synthesis’ following treatment with extremely low doses of mutagens and carcinogens.  相似文献   

4.
Effect of Interferon on Some Aspects of Transformation by Polyoma Virus   总被引:1,自引:0,他引:1  
WHEN BHK 21 hamster cells are infected with polyoma virus1, there is no vegetative growth of virus, but stably transformed cells appear. These transformed cells are more easily transplanted than BHK 21 cells; they initiate their growth cycle in otherwise restrictive cultural conditions such as the absence of serum, high density and suspension; they grow with random orientation and have exposed on their surfaces receptor sites for certain glycoprotein agglutinins2–5. The proportion of stably transformed cells is low, even after high doses of virus. But a much higher proportion (sometimes all cells) shows abortive transformation—changes characteristic of transformation, but which last only a few days. In suspension cultures, for example, most of the infected cells grow into small colonies of four to thirty-two cells6. In surface cultures deprived of serum DNA synthesis is initiated and the cells may then divide at least once7: they also temporarily lose the normal parallel orientation and develop the typical random appearance of transformed cells. Moreover, the polyoma nuclear T-antigen and also a surface antigen detected by immunofluorescence, appear temporarily in most polyoma infected BHK 21 cells8, while 3T3 cells exposed to SV40 virus show transient exposure of cell surface sites reacting with conconavalin A (ref. 9).  相似文献   

5.
6.
The effect of nicotinamide on unscheduled DNA synthesis was studied in resting human lymphocytes. In cells treated with UV irradiation or with MNNG, nicotinamide caused a two-fold stimulation of unscheduled DNA synthesis and retarded the rate of NAD+ lowering caused by these treatments. Nicotinamide also reduced the burst of poly(ADP-ribose) synthesis caused by MNNG treat-ment. Thus under conditions that it enhances unscheduled DNA synthesis, nicotinamide causes marked effects on the metabolism of NAD+ and poly(ADP-ribose). The effect of nicotinamide on unscheduled DNA synthesis was shown to be independent of protein or polyamine synthesis.  相似文献   

7.
The thymidine analogue 5-bromodeoxyuridine (BUdR) has a differential effect on the synthesis of tissue-specific products and molecules required for growth and division. Proliferating myogenic cells cultured in BUdR fail to fuse and fail to initiate the synthesis of contractile protein filaments. Conversely, BUdR has but a minor effect on cell viability and reproductive integrity. Low concentrations of BUdR result in an enhancement of cell number relative to the controls; higher concentrations are cytotoxic. Suppression of myogenesis is reversible after at least 10 cell generations of growth in the analogue. Cells that do not synthesize DNA, such as postmitotic myoblasts and myotubes, are not affected by BUdR. Incorporation of BUdR for one round of DNA synthesis was accomplished by first incubating myogenic cells, prior to fusion, in 5-fluorodeoxyuridine (FUdR) to block DNA synthesis and collect cells in the presynthetic phase. The cells were then allowed to synthesize either normal DNA or BU-DNA for one S period by circumventing the FUdR block with BUdR or BUdR plus thymidine (TdR). The cultures were continued in FUdR to prevent dilution of the incorporated analogue by further division. After 3 days, the cultures from the FUdR-BUdR series showed the typical BUdR effect; the cells were excessively flattened and few multinucleated myotubes formed. Cells in the control cultures were of normal morphology, and multinucleated myotubes were present. These results were confirmed in another experiment in which BUdR-3H was added to 2-day cultures in which myotubes were forming. Fusion of thymidine-3H-labeled cells begins at 8 hr after the preceding S phase. In contrast, cells which incorporate BUdR-3H for one S period do not fuse with normal myotubes.  相似文献   

8.
Embryos of the silkworm, Bombyx mori L., were dispersed by trypsin and the dissociated cells were cultured for infection with nuclear polyhedrosis virus (NPV) of the silkworm. The monolayer and suspension cultures were infected with NPV. RNA and DNA syntheses in the normal and NPV-infected cells were measured by incorporation of 32P into RNA and DNA fractions. RNA and DNA syntheses in the cells after infection significantly increased over those in control cells (mock infection). The effects of actinomycin D, chloramphenicol and mitomycin C on RNA and DNA syntheses in infected cells were examined. The syntheses were inhibited by the antibiotics. It was suggested that the cellular DNA synthesis was inhibited by the viral infection, because the mitomycin C-resistant DNA synthesis was found in the normal cells but not in the infected cells treated with mitomycin C. The rate of DNA synthesis induced by NPV was immediately dropped to that of control cells by addition of chloramphenicol, while the RNA synthesis induced by NPV was not affected for 6 hr after the addition of chloramphenicol. If the antibiotic did not affect the size of precursor pools, this event suggested that the RNA polymerase concerned with viral RNA synthesis was more stable than the DNA polymerase participating in the viral DNA synthesis. The viral DNA as templates for RNA and DNA syntheses was decomposed by mitomycin C.  相似文献   

9.
The early steps in vaccinia virus infection were studied in HeLa cells which had been treated with actinomycin D (1 μg/ml) and then incubated for several hours in fresh medium prior to infection. Initiation of infection occurred in such cells even though the synthesis of cellular ribonucleic acid and deoxyribonucleic acid (DNA) was severely depressed. Thymidine kinase was synthesized in amounts that exceeded those found in untreated, infected cells. The breakdown of viral “cores” to liberate viral DNA and the synthesis of viral specific DNA-polymerase also occurred but were somewhat delayed. A deoxyribonuclease resembling an exonuclease was made by the infected, pretreated cells. The time course for these events suggested that the genetic code for synthesis of thymidine kinase can be expressed before “cores” are broken down, but the DNA-polymerase can be synthesized only after liberation of the viral DNA. The amount of viral specific DNA-polymerase which was made after infection was proportional to the total number of virus synthesizing sites even beyond the point where all the cells were infected with one infectious particle. A similar relationship was observed for the amount of thymidine kinase formed and for the rate of viral DNA synthesis from 3H-thymidine.  相似文献   

10.
Several types of culture cells with limited life span (rat embryo fibroblasts, rat chondrocytes and mouse premacrophages) were found to be unable to induce the reactivation of DNA synthesis in the nuclei of non-dividing differentiated cells (mouse peritoneal resident macrophages) in heterokaryons. By contrast, malignant HeLa cells have this ability. In heterokaryons formed by fusion of mouse macrophages with HE239 cells (Syrian hamster fibroblasts transformed with a ts mutant of the SV40 virus), DNA synthesis in macrophage nuclei is reactivated only at the permissive temperature (33° C), at which viral T antigen is stable. Immortalization of rat chondrocytes by transfection with p53 gene enables to induce DNA synthesis in macrophage nuclei upon fusion. All the evidence indicates that the function of immortalizing oncogenes is necessary for the resumption of the DNA synthesis in macrophage nuclei in heterokaryons.  相似文献   

11.
HIV fusion and entry into CD4 T cells are mediated by two receptors, CD4 and CXCR4. This receptor requirement can be abrogated by pseudotyping the virion with the vesicular stomatitis virus glycoprotein (VSV-G) that mediates viral entry through endocytosis. The VSV-G-pseudotyped HIV is highly infectious for transformed cells, although the virus circumvents the viral receptors and the actin cortex. In HIV infection, gp120 binding to the receptors also transduces signals. Recently, we demonstrated a unique requirement for CXCR4 signaling in HIV latent infection of blood resting CD4 T cells. Thus, we performed parallel studies in which the VSV-G-pseudotyped HIV was used to infect both transformed and resting T cells in the absence of coreceptor signaling. Our results indicate that in transformed T cells, the VSV-G-pseudotyping results in lower viral DNA synthesis but a higher rate of nuclear migration. However, in resting CD4 T cells, only the HIV envelope-mediated entry, but not the VSV-G-mediated endocytosis, can lead to viral DNA synthesis and nuclear migration. The viral particles entering through the endocytotic pathway were destroyed within 1–2 days. These results indicate that the VSV-G-mediated endocytotic pathway, although active in transformed cells, is defective and is not a pathway that can establish HIV latent infection of primary resting T cells. Our results highlight the importance of the genuine HIV envelope and its signaling capacity in the latent infection of blood resting T cells. These results also call for caution on the endocytotic entry model of HIV-1, and on data interpretation where the VSV-G-pseudotyped HIV was used for identifying HIV restriction factors in resting T cells.  相似文献   

12.
It has been known for several years that DNA replication and histone synthesis occur concomitantly in cultured mammalian cells. Normally all five classes of histones are synthesized coordinately. However, mouse myeloma cells, synchronized by starvation for isoleucine, synthesize increased amounts of histone H1 relative to the four nucleosomal core histones. This unscheduled synthesis of histone H1 is reduced within 1 h after refeeding isoleucine, and is not a normal component of G1. The synthesis of H1 increases coordinately again with other histones during the S phase. The DNA synthesis inhibitors, cytosine arabinoside and hydroxyurea, block all histone synthesis in S-phase cells. The levels of histone H1 mRNA, relative to the other histone mRNAs, is increased in isoeleucine-starved cells and decreases rapidly after refeeding isoleucine. The increased incorporation of histone H1 is at least partially due to the low isoleucine content of histone H1. Starvation of cells for lysine resulted in a decrease in H1 synthesis relative to core histones. Again the ratio was altered on refeeding the amino acid. 3T3 cells starved for serum also incorporated only H1 histones into chromatin. The ratio of different H1 proteins also changed. The synthesis of the H10 protein was predominant in G0 cells, and reduced in S-phase cells. These data indicate the metabolism of H1 is independent of the other histones when cell growth is arrested.  相似文献   

13.
Human cytomegalovirus (CMV) DNA synthesis was studied in 5-fluorouracil (FU)-treated and untreated human embryonic lung cells, which differ greatly with respect to the number of cells in the culture synthesizing cellular DNA. CMV DNA synthesis proceeded at the same rate in FU-treated and in untreated cells. CMV infection also reversed the inhibitory effects of FU and activated cellular DNA synthesis in some of the cells in the FU-treated culture. Autoradiographic studies showed that more than 20% of the cells in the infected FU-treated culture synthesized viral DNA when less than 1% had synthesized cellular DNA, indicating that the synthesis of viral macromolecules proceeds in cells that do not synthesize cellular DNA from the time of infection, and that viral DNA synthesis proceeds independently of the host cell DNA synthesis. Combined autoradiographic and immunofluorescence studies of both the FU-treated and untreated infected cells showed that, whereas 20% of the cells in the cultures synthesize viral DNA and viral antigens, only about 3 to 6% of those cells that synthesize cellular DNA also synthesize viral antigen. Thus, productive infection was delayed or inhibited in those cells that were stimulated by CMV infection to synthesize cellular DNA.  相似文献   

14.
15.
Initiation of Mammalian Viral Protein Synthesis   总被引:5,自引:0,他引:5  
CULTURED human cells (KB) infected with human adenovirus type 2 (Ad 2) provide a model system for protein synthesis in mammalian cells. Adenovirus messenger RNA molecules are transcribed from nuclear viral DNA and transported to the cytoplasm for translation1. Late after infection (18 h) 9–10 viral mRNA species with sedimentation values of 7S to 32S are present in polysomes (Parsons, Gardner and Green, in preparation) and specify eight viral structural proteins which account for 80–90% of the polypeptides synthesized in vivo2–4. We now describe an in vitro cell-free system, derived from KB cells infected with Ad 2, which synthesizes 8–9 viral polypeptides and can initiate protein synthesis with a special class of yeast methionyl-tRNA. In vivo and in vitro experiments suggest that methionine is the initiator amino-acid for most, if not all, adenovirus structural proteins.  相似文献   

16.
L Lania  M Griffiths  B Cooke  Y Ito  M Fried 《Cell》1979,18(3):793-802
The polyoma virus hr-t deletion mutant A185, when compared to wild-type (Py) virus, is at least 105 fold inhibited in its transforming ability. Total cellular DNA from 50 cell lines derived from individual colonies formed after infection of Rat-1 cells with A185 virus was analyzed for the presence of viral sequences by “blot” hybridization (Southern, 1975). Viral sequences were detected in two of these cellular DNAs. One positive cell line (18–37) was studied in detail. The viral sequences present in 18–37 cells as well as the viral sequences present in virus rescued from 18–37 after fusion with permissive mouse cells were identified as A185 and not Py sequences. The A185 viral sequences in 18–37 cells were found to exist both covalently linked to host DNA sequences (integrated) and as free forms. The integrated A185 viral sequences were present in a partial head-to-tail tandem array, as has been observed for Py sequences in transformed rat cells (Birg et al., 1979). Both integrated and free forms of A185 viral sequences were retained in subclones of the parental 18–37 cell line although a simplification of the integrated viral sequence was observed. In the 18–37 cells the 100K large T antigen was synthesized but the 55K middle and 22K small T antigen species were not detected. The 18–37 cells had a normal morphology, were density-sensitive, anchorage-dependent and did not form tumors when injected into syngeneic animals. This normal phenotype of the 18–37 cells was not a result of the inability of the cells to express the transformed phenotype, since the 18–37 cells could be transformed at a high frequency upon infection with Py virus. These results show that integration of viral sequences per se or the presence of the 100K large T antigen is not sufficient for the transformed phenotype to be expressed, and strongly suggest that Py-induced transformation is mediated by the 55K middle and/or 22K small T antigens.  相似文献   

17.
Messenger RNA transport was studied in KB cells infected with the nuclear DNA virus adenovirus type 2. Addition of 0.04 µg/ml of actinomycin completes the inhibition of ribosome synthesis normally observed late after infection and apparently does not alter the pattern of viral RNA synthesis: Hybridization-inhibition experiments indicate that similar viral RNA sequences are transcribed in cells treated or untreated with actinomycin. The polysomal RNA synthesized during a 2 hr labeling period in the presence of actinomycin is at least 60% viral specific. Viral messenger RNA transport can occur in the absence of ribosome synthesis. When uridine-3H is added to a late-infected culture pretreated with actinomycin, viral RNA appears in the cytoplasm at 10 min, but the polysomes do not receive viral RNA-3H until 30 min have elapsed. Only 25% of the cytoplasmic viral RNA is in polyribosomes even when infected cells have been labeled for 150 min. The nonpolysomal viral RNA in cytoplasmic extracts sediments as a broad distribution from 10S to 80S and does not include a peak cosedimenting with 45S ribosome subunits. The newly formed messenger RNA that is ribosome associated is not equally distributed among the ribosomes; by comparison to polyribosomes, 74S ribosomes are deficient at least fivefold in receipt of new messenger RNA molecules.  相似文献   

18.
H Slor 《Mutation research》1973,19(2):231-235
The carcinogen 7-bromomethylbenz(a)anthracene (BBA), which can bind strongly to DNA, induces unscheduled DNA synthesis (DNA repair) in normal lymphocytes but almost none in lymphocytes from patients with Xeroderma pigmentosum (XP), and inherited disease known to be defective in excision repair of ultraviolet-damaged DNA. We studied [3H]BBA's ability to bind to DNA of normal and XP lymphocytes, its influence on unscheduled DNA synthesis, and its removal from the DNA of both cell types. We found that 20–30% of the BBA is bound to macromolecules other than DNA and that its binding to DNA is essentially complete after 30 min. The induction of unscheduled DNA synthesis by the carcinogen in XP lymphocytes was approximately 10% of that induced in normal lymphocytes. While 15–20% of the BBA was removed from the DNA of normal cells 6 h after treatment, only 1–2% was removed from the DNA of XP cells. Thus, XP cells not only are defective in repairing ultraviolet-damaged DNA and excising thymine dimers but also fail to repair DNA damaged by certain carcinogens, and, most importantly, fail to remove the DNA-bound carcinogen, BBA.  相似文献   

19.
Cells of the myogenic rat cell line L6 can be obtained as a confluent, quiescent population of undifferentiated myoblasts after growth in F12 medium supplemented with fetal calf serum. Myogenic differentiation can be induced in these cells by changing to Dulbecco's modified Eagle's (DME) medium containing insulin as the only protein component. Labeling of the cells with [3H]thymidine demonstrates that this induction of fusion occurs in the absence of DNA synthesis in about 85% of the cells. This result was confirmed using cytosine arabinoside: fusion of quiescent L6 cells was induced in the presence of this inhibitor of DNA synthesis. The myotubes formed in DME + insulin medium, with or without cytosine arabinoside, synthesize or accumulate proteins characteristic of differentiated muscle cells including myosin heavy and light chains, alpha-actin, alpha- and beta-tropomyosins, and the acetylcholine receptor. These experiments represent a direct demonstration that DNA synthesis is not required for the induction of myogenic differentiation in undifferentiated quiescent cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号