首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli ribosomes and Qβ [32P]RNA were incubated with or without fMet-tRNA under protein initiation conditions, treated with RNase A, and centrifuged through a sucrose density gradient. The sample incubated with fMet-tRNA gave a main radioactivity peak in the 70 S region, which consisted predominantly of coat cistron initiator fragments. After incubation without fMet-tRNA, equal amounts of radioactivity were found in the 70 S and the 30 S regions, but in both peaks almost all of the radioactivity was duo to three RNase A-resistant oligonucleotides, A-G-A-G-G-A-G-G-Up (P-2a), A-G-G-G-G-G-Up (P-15) and G-G-A-A-G-G-A-G-Cp (P-4). These three oligonucleotides are derived from three different RNA regions, none of which is close to a protein initiation site. All three fragments show striking complementarity to the 3′-terminal region of E. coli 16 S RNA. Ribosomes incubated with an RNase A digest of Qβ [32P]RNA bound almost exclusively oligonucleotide P-2a; treatment with cloacin DF13 cleaved off a complex consisting of a 49-nucleotide long segment of 16 S rRNA and oligonucleotide P-2a. These experiments show that the interaction of 30 S ribosomes with the “Shine-Dalgarno” region preceding the initiator codon of the Qβ coat cistron is insufficient to direct correct placement of the ribosome on the viral RNA, and that an additional contribution from the interaction of fMet-tRNA with the initiator triplet is required for ribosome binding to the initiator region.  相似文献   

2.
Protein S15 is a characteristic component of the mammalian 80S ribosome that neighbors the mRNA codon at the decoding site and the downstream triplets. The S15 fragment juxtaposed in the human ribosome to mRNA nucleotides +4 to +12 relative to the first nucleotide of the P-site codon was determined. S15 was modified using a set of mRNA analogs containing the triplet UUU/UUC at the 5′ end and a perfluorophenyl azide-carrying uridine at various positions downstream of this triplet. The mRNA analogs were positioned on the ribosome with the use of tRNAPhe, cognate to the UUU/UUC triplet, targeted to the P site. Modified S15 was isolated from complexes of 80S ribosomes with tRNAPhe and the mRNA analogs after irradiation with mild UV light and hydrolyzed with cyanogen bromide, cleaving the polypeptide chain after Met residues. Analysis of the modified oligopeptides resulting from hydrolysis demonstrated that the crosslinking site was in C-terminal fragment 111–145 of S15 in all cases, suggesting the involvement of this fragment in the decoding site of the eukaryotic ribosome.  相似文献   

3.
MATURE 5S, 16S and 23S ribosomal RNA species present in E. coli ribosomes are the end products of complex biosyn-thetic pathways. They are formed by reduction in length, and methylation of longer RNA chains transcribed on the ribosomal RNA cistrons of E. coli DNA. While these modifications take place the ribosome structure is formed by progressive addition of ribosomal proteins and conformational changes in the resulting ribonucleoprotein precursor particles1.  相似文献   

4.
Leaderless mRNAs are translated in the absence of upstream signals that normally contribute to ribosome binding and translation efficiency. In order to identify ribosomal components that interact with leaderless mRNA, a fragment of leaderless cI mRNA from bacteriophage λ, with a 4-thiouridine (4S-U) substituted at the +2 position of the AUG start codon, was used to form cross-links to Escherichia coli ribosomes during binary (mRNA+ribosome) and ternary (mRNA+ribosome+initiator tRNA) complex formation. Ribosome binding assays (i.e., toeprints) demonstrated tRNA-dependent binding of leaderless mRNA to ribosomes; however, cross-links between the start codon and 30S subunit rRNA and r-proteins formed independent of initiator tRNA. Toeprints revealed that a leaderless mRNA's 5′-AUG is required for stable binding. Furthermore, the addition of a 5′-terminal AUG triplet to a random RNA fragment can make it both competent and competitive for ribosome binding, suggesting that a leaderless mRNA's start codon is a major feature for ribosome interaction. Cross-linking assays indicate that a subset of 30S subunit r-proteins, located at either end of the mRNA tunnel, contribute to tRNA-independent contacts and/or interactions with a leaderless mRNA's start codon. The interaction of leaderless mRNA with ribosomes may reveal features of mRNA binding and AUG recognition that are distinct from known signals but are important for translation initiation of all mRNAs.  相似文献   

5.
In Xenopus laevis oocytes, 5S RNA is stored in the cytoplasm until vitellogenesis, at which time it is imported into the nucleus and targeted to nucleoli for ribosome assembly. This article shows that throughout oogenesis there is a pool of nuclear 5S RNA which is not nucleolar-associated. This distribution reflects that of oocyte-type 5S RNA, which is the major 5S RNA species in oocytes; only small amounts of somatic-type, which differs by six nucleotides, are synthesized. Indeed, 32P-labeled oocyte-type 5S RNA showed a degree of nucleolar localization similar to endogenous 5S RNA (33%) after microinjection. In contrast, 32P-labeled somatic-type 5S RNA showed significantly enhanced localization, whereby 70% of nuclear RNA was associated with nucleoli. A chimeric RNA molecule containing only one somatic-specific nucleotide substitution also showed enhanced localization, in addition to other somatic-specific phenotypes, including enhanced nuclear import and ribosome incorporation. The distribution of 35S-labeled ribosomal protein L5 was similar to that of oocyte-type 5S RNA, even when preassembled with somatic-type 5S RNA. The distribution of a series of 5S RNA mutants was also analyzed. These mutants showed various degrees of localization, suggesting that the efficiency of nucleolar targeting can be influenced by many discrete regions of the 5S RNA molecule. J. Cell. Biochem. 69:490–505, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
7.
Messenger RNA transport was studied in KB cells infected with the nuclear DNA virus adenovirus type 2. Addition of 0.04 µg/ml of actinomycin completes the inhibition of ribosome synthesis normally observed late after infection and apparently does not alter the pattern of viral RNA synthesis: Hybridization-inhibition experiments indicate that similar viral RNA sequences are transcribed in cells treated or untreated with actinomycin. The polysomal RNA synthesized during a 2 hr labeling period in the presence of actinomycin is at least 60% viral specific. Viral messenger RNA transport can occur in the absence of ribosome synthesis. When uridine-3H is added to a late-infected culture pretreated with actinomycin, viral RNA appears in the cytoplasm at 10 min, but the polysomes do not receive viral RNA-3H until 30 min have elapsed. Only 25% of the cytoplasmic viral RNA is in polyribosomes even when infected cells have been labeled for 150 min. The nonpolysomal viral RNA in cytoplasmic extracts sediments as a broad distribution from 10S to 80S and does not include a peak cosedimenting with 45S ribosome subunits. The newly formed messenger RNA that is ribosome associated is not equally distributed among the ribosomes; by comparison to polyribosomes, 74S ribosomes are deficient at least fivefold in receipt of new messenger RNA molecules.  相似文献   

8.
Ribosomes isolated from seeds of the sugar pine, Pinus lambertiana, have been characterized: The ribosome has a sedimentation coefficient (s20,w0) of 78·2 S and contains 41 % RNA and 58 % protein. On dialysis against buffer containing 0·5-1 mM MgCl2, the ribosome was reversibly transformed into an intermediate form (60 S). Further removal of Mg2+ causes the intermediate ribosome to dissociate into subunits (30 S and 40 S). Treatment of the intermediate ribosome with p-chloromercuribenzoic acid caused the dissociation of the particle into subunits. Incubating the 80 S ribosome with the sulfhydryl reagent caused a rapid transformation of the particle into an intermediate type particle. These results suggest that sulfhydryl groups are involved not only in associating the subunits but also in maintaining the compact structure of the ribosomes. The ribosome contains three ribosomal RNA components of 28 S, 18 S and 5 S. The base compositions of the three ribosomal RNA components are different.  相似文献   

9.
The bacterial ribosome switches from an mRNA lacking an in-frame stop codon and resumes translation on a specialized RNA known as tmRNA, SsrA or 10Sa RNA. We find that the ribosome can reach and use the extreme 3' terminal codon of the defective mRNA prior to switching. The first triplet to be translated in tmRNA (the resume codon) is determined at two levels: distant elements in tmRNA restrict resume codon choice to a narrow window and local upstream elements provide precision. Insights from a randomization-selection experiment secure the alignment of tmRNA sequences from diverse species. The triplet UA(A/G) (normally recognized as a stop codon by release factor-1) is strongly conserved two nucleotides upstream of the resume codon. The central adenosine of this triplet is essential for tmRNA activity. The reading frame of tmRNA is determined differently from all other known reading frames in that the first translated codon is not specified by a particular tRNA anticodon.  相似文献   

10.
11.
RNA synthesis in radish is studied during the first stages of germination. The radish seeds allowed to germinate in the dark, on distilled water, synthesize ribosomal RNA and accumulate a particular RNA, not incorporated in ribosomes. The results of 32P incorporation in RNA of radish seedlings indicate a progressive formation of ribosomal RNA. Two species of rapidly labelled RNA are synthesized. With labelling time, their chromatographic behaviour on MAK columus evolves, while their electrophoretic characteristics remain stable. It is assumed that these two species are involved in ribosome formation. In vivo experiments with chloramphenicol support this conclusion. RNA which accumulates during germination, could be a particular type of ribosomal RNA which could be enable, under the definite culture conditions, to enter into ribosomal structures.  相似文献   

12.
Defects in ribosome biogenesis and function are present in a growing list of human syndromes associated with cancer susceptibility. One example is X‐linked dyskeratosis congenita (X‐DC) in which the DKC1 gene, encoding for an enzyme that modifies ribosomal RNA, is found to be mutated. How ribosome dysfunction leads to cancer remains poorly understood. A critical cellular response that counteracts cellular transformation is oncogene‐induced senescence (OIS). Here, we show that during OIS, a switch between cap‐ and internal ribosome entry site (IRES)‐dependent translation occurs. During this switch, an IRES element positioned in the 5′untranslated region of p53 is engaged and facilitates p53 translation. We further show that in DKC1m cells, p53 IRES‐dependent translation is impaired during OIS ex vivo and on DNA damage in vivo. This defect in p53 translation perturbs the cellular response that counteracts oncogenic insult. We extend these findings to X‐DC human patient cells in which similar impairments in p53 IRES‐dependent translation are observed. Importantly, re‐introduction of wild‐type DKC1 restores p53 expression in these cells. These results provide insight into the basis for cancer susceptibility in human syndromes associated with ribosome dysfunction.  相似文献   

13.
RNA prepared from dormant cysts and developmental stages of the brine shrimp Artemia salina stimulated the incorporation of 14C-leucine into polypeptide by a cell-free Escherichia coli system. Preparations from cysts were about as active as those from hatching embryos or nauplii. When analysed by density gradient centrifugation the activity of cyst RNA showed a heterodisperse distribution, not quantitatively related to the absorbance profile. These results and evidence from similar experiments with crude ribosome preparations indicated that the contribution of 18S and 28S ribosomal RNA to the template-like activity was fairly limited. The experiments suggest that RNA with latent messenger activity is present in Artemia cysts during the resting stage.  相似文献   

14.
The protein environment of mRNA 3′ of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5′-end and a perfluoroarylazide group at one of the nucleotide residues 3′ of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in ternary complexes and in the absence of tRNA. Within ternary complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed; it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3′ of the codon in the decoding site.  相似文献   

15.
16.
STUDIES with T4 mRNA showed that initiation factor F2 (C) promotes the attachment of ribosomes to mRNA1. On the 30S ribosomal subunit this effect is independent of the function of F2 in the binding of formylmethionyl tRNA2, whereas formation of a 70S-mRNA complex depends on the binding of fMet-tRNA3. Template competition experiments4 showed that, with F2 (C), the ribosome seems to have the same affinity for synthetic polynucleotides as for natural mRNA. Addition of initiation factor F3 (B), however, leads to preferential binding of ribosomes to the natural mRNA. This suggests4 that while factor F2 (C) binds the ribosome to any site on the mRNA, the function of factor F3 (B) is to recognize some specific signal in natural mRNA corresponding, perhaps, to the beginning of a cistron. Fractionation of initiation factor F3 (B) into several species differing in their specificity for different mRNA templates5 gave further support to the hypothesis that this protein can select binding sites. An excellent system to demonstrate this effect of F3 (B) would be the binding of ribosomes to RNA from E. coli RNA bacteriophages, since Steitz6 has analysed and determined the nucleotide sequence of the three binding sites corresponding to the three cistrons of R17 mRNA. Experiments were thus undertaken to study the effect of a purified fraction of F3 (B) on the binding of ribosomes to the different sites of such a phage RNA.  相似文献   

17.
When the K+ channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.  相似文献   

18.
Protein biosynthesis is fundamental to cellular life and requires the efficient functioning of the translational machinery. At the center of this machinery is the ribosome, a ribonucleoprotein complex that depends heavily on Mg2+ for structure. Recent work has indicated that other metal cations can substitute for Mg2+, raising questions about the role different metals may play in the maintenance of the ribosome under oxidative stress conditions. Here, we assess ribosomal integrity following oxidative stress both in vitro and in cells to elucidate details of the interactions between Fe2+ and the ribosome and identify Mn2+ as a factor capable of attenuating oxidant-induced Fe2+-mediated degradation of rRNA. We report that Fe2+ promotes degradation of all rRNA species of the yeast ribosome and that it is bound directly to RNA molecules. Furthermore, we demonstrate that Mn2+ competes with Fe2+ for rRNA-binding sites and that protection of ribosomes from Fe2+-mediated rRNA hydrolysis correlates with the restoration of cell viability. Our data, therefore, suggest a relationship between these two transition metals in controlling ribosome stability under oxidative stress.  相似文献   

19.
Summary The ribosome is proposed to have evolved from an earlier RNA-replisome, which synthesized RNA. Ancestral tRNA molecules originally were loaded with trinucleotide sequences and donated them to growing RNA chains. The enzymatic addition of the C-C-A trinucleotide to presentday transfer RNA molecules is a carryover from this function. The strategies of reading RNA sequences by triplet codons and of housing information genetically in special repository molecules predates the origin of protein and DNA. These latter two polymers arose together at the time when the RNA replisome was converted to a ribosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号