首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Legionella species are ubiquitous, waterborne bacteria that thrive in numerous ecological niches. Yet, in contrast to many other environmental bacteria, Legionella spp. are also able to grow intracellularly in predatory protozoa. This feature mainly accounts for the pathogenicity of Legionella pneumophila, which causes the majority of clinical cases of a severe pneumonia termed Legionnaires' disease. The pathomechanism underlying L. pneumophila infection is based on macrophage resistance, which in turn is largely defined by the opportunistic pathogen's resistance towards amoebae. L. pneumophila replicates in macrophages or amoebae in a unique membrane‐bound compartment, the Legionella‐containing vacuole (LCV). LCV formation requires the bacterial intracellular multiplication/defective for organelle trafficking (Icm/Dot) type IV secretion system and involves a plethora of translocated effector proteins, which subvert pivotal processes in the host cell. Of the ca. 300 different experimentally validated Icm/Dot substrates, about 50 have been studied and attributed a cellular function to date. The versatility and ingenuity of these effectors' mode of actions is striking. In this review, we summarize insight into the cellular functions and biochemical activities of well‐characterized L. pneumophila effector proteins and the host pathways they target. Recent studies not only substantially increased our knowledge about pathogen–host interactions, but also shed light on novel biological mechanisms.  相似文献   

2.
The opportunistic pathogen Legionella pneumophila employs the Icm/Dot type IV secretion system and ~300 different effector proteins to replicate in macrophages and amoebae in a distinct ‘Legionella‐containing vacuole’ (LCV). LCVs from infected RAW 264.7 macrophages were enriched by immuno‐affinity separation and density gradient centrifugation, using an antibody against the L. pneumophila effector SidC, which specifically binds to the phosphoinositide PtdIns(4)P on the pathogen vacuole membrane. The proteome of purified LCVs was determined by mass spectro‐metry (data are available via ProteomeXchange with identifier PXD000647). The proteomics analysis revealed more than 1150 host proteins, including 13 small GTPases of the Rab family. Using fluorescence microscopy, 6 novel Rab proteins were confirmed to localize on pathogen vacuoles harbouring wild‐type but not ΔicmT mutant L. pneumophila. Individual depletion of 20 GTPases by RNA interference indicated that endocytic GTPases (Rab5a, Rab14 and Rab21) restrict intracellular growth of L. pneumophila, whereas secretory GTPases (Rab8a, Rab10 and Rab32) implicated in Golgi‐endosome trafficking promote bacterial replication. Upon silencing of Rab21 or Rab32, fewer LCVs stained positive for Rab4 or Rab9, implicated in secretory or retrograde trafficking respectively. Moreover, depletion of Rab8a, Rab14 or Rab21 significantly decreased the number of SidC‐positive LCVs, suggesting that PtdIns(4)P is reduced under these conditions. L. pneumophila proteins identified in purified LCVs included proteins putatively implicated in phosphorus metabolism and as many as 60 Icm/Dot‐translocated effectors, which are likely required early during infection. Taken together, the phagocyte and Legionella proteomes of purified LCVs lay the foundation for further hypothesis‐driven investigations of the complex process of pathogen vacuole formation.  相似文献   

3.
The Legionella pneumophila Dot/Icm T4SS injects ~ 300 protein effector proteins into host cells. Dot/Icm substrates have been proposed to contain a carboxy‐terminal signal sequence that is necessary and sufficient for export, although both traits have been demonstrated for only a small fraction of these proteins. In this study, we discovered that export of the substrate SidJ is mediated by dual signal sequences that include a conventional C‐terminal domain and a novel internal motif. The C‐terminal signal sequence facilitates secretion of SidJ into host cells at early points of infection, whereas the internal signal sequence mediates secretion at later time points. Interestingly, only the internal signal sequence is necessary for complementation of the intracellular growth defect of a ΔsidJ mutant. Although this is the first report of a Dot/Icm substrate being secreted by an internal signal sequence, many other substrates may be exported in a similar manner. In addition, efficient translocation of SidJ is dependent on the chaperone‐like type IV adaptors IcmS/IcmW. Five IcmS/IcmW binding domains that are distinct from both signal sequences were elucidated and, interestingly, only secretion mediated by the internal signal sequence requires IcmS/IcmW. Thus, Legionella employs multiple sophisticated molecular mechanisms to regulate the export of SidJ.  相似文献   

4.
The environmental bacterium Legionella pneumophila causes a severe pneumonia termed Legionnaires' disease. L. pneumophila employs a conserved mechanism to replicate within a specific vacuole in macrophages or protozoa such as the social soil amoeba Dictyostelium discoideum. Pathogen–host interactions depend on the Icm/Dot type IV secretion system (T4SS), which translocates approximately 300 different effector proteins into host cells. Here we analyse the effects of L. pneumophila on migration and chemotaxis of amoebae, macrophages or polymorphonuclear neutrophils (PMN). Using under‐agarose assays, L. pneumophila inhibited in a dose‐ and T4SS‐dependent manner the migration of D. discoideum towards folate as well as starvation‐induced aggregation of the social amoebae. Similarly, L. pneumophila impaired migration of murine RAW 264.7 macrophages towards the cytokines CCL5 and TNFα, or of primary human PMN towards the peptide fMLP respectively. L. pneumophila lacking the T4SS‐translocated activator of the small eukaryotic GTPase Ran, Lpg1976/LegG1, hyper‐inhibited the migration of D. discoideum, macrophages or PMN. The phenotype was reverted by plasmid‐encoded LegG1 to an extent observed for mutant bacteria lacking a functional Icm/Dot T4SS.Similarly, LegG1 promoted random migration of L. pneumophila‐infected macrophages and A549 epithelial cells in a Ran‐dependent manner, or upon ‘microbial microinjection’ into HeLa cells by a Yersinia strain lacking endogenous effectors. Single‐cell tracking and real‐time analysis of L. pneumophila‐infected phagocytes revealed that the velocity and directionality of the cells were decreased, and cell motility as well as microtubule dynamics was impaired. Taken together, these findings indicate that the L. pneumophila Ran activator LegG1 and consequent microtubule polymerization are implicated in Icm/Dot‐dependent inhibition of phagocyte migration.  相似文献   

5.
Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.  相似文献   

6.
7.
The severe pneumonia known as Legionnaires' disease occurs following infection by the Gram‐negative bacterium Legionella pneumophila. Normally resident in fresh‐water sources, Legionella are subject to predation by eukaryotic phagocytes such as amoeba and ciliates. To counter this, L. pneumophila has evolved a complex system of effector proteins which allow the bacteria to hijack the phagocytic vacuole, hiding and replicating within their erstwhile killers. These same mechanisms allow L. pneumophila to hijack another phagocyte, lung‐based macrophages, which thus avoids a vital part of the immune system and leads to infection. The course of infection can be divided into five main categories: pathogen uptake, formation of the replication‐permissive vacuole, intracellular replication, host cell response, and bacterial exit. L. pneumophila effector proteins target every stage of this process, interacting with secretory, endosomal, lysosomal, retrograde and autophagy pathways, as well as with mitochondria. Each of these steps can be studied in protozoa or mammalian cells, and the knowledge gained can be readily applied to human pathogenicity. Here we describe the manner whereby L. pneumophila infects host protozoa, the various techniques which are available to analyse these processes and the implications of this model for Legionella virulence and the pathogenesis of Legionnaires' disease.  相似文献   

8.
Legionella pneumophila is an opportunistic pathogen that can cause a severe pneumonia called Legionnaires'' disease. In the environment, L. pneumophila is found in fresh water reservoirs in a large spectrum of environmental conditions, where the bacteria are able to replicate within a variety of protozoan hosts. To survive within eukaryotic cells, L. pneumophila require a type IV secretion system, designated Dot/Icm, that delivers bacterial effector proteins into the host cell cytoplasm. In recent years, a number of Dot/Icm substrate proteins have been identified; however, the function of most of these proteins remains unknown, and it is unclear why the bacterium maintains such a large repertoire of effectors to promote its survival. Here we investigate a region of the L. pneumophila chromosome that displays a high degree of plasticity among four sequenced L. pneumophila strains. Analysis of GC content suggests that several genes encoded in this region were acquired through horizontal gene transfer. Protein translocation studies establish that this region of genomic plasticity encodes for multiple Dot/Icm effectors. Ectopic expression studies in mammalian cells indicate that one of these substrates, a protein called PieA, has unique effector activities. PieA is an effector that can alter lysosome morphology and associates specifically with vacuoles that support L. pneumophila replication. It was determined that the association of PieA with vacuoles containing L. pneumophila requires modifications to the vacuole mediated by other Dot/Icm effectors. Thus, the localization properties of PieA reveal that the Dot/Icm system has the ability to spatially and temporally control the association of an effector with vacuoles containing L. pneumophila through activities mediated by other effector proteins.  相似文献   

9.
The Dot/Icm system of the intracellular pathogen Legionella pneumophila has the capacity to deliver over 270 effector proteins into host cells during infection. Important questions remain as to spatial and temporal mechanisms used to regulate such a large array of virulence determinants after they have been delivered into host cells. Here we investigated several L. pneumophila effector proteins that contain a conserved phosphatidylinositol-4-phosphate (PI4P)-binding domain first described in the effector DrrA (SidM). This PI4P binding domain was essential for the localization of effectors to the early L. pneumophila-containing vacuole (LCV), and DrrA-mediated recruitment of Rab1 to the LCV required PI4P-binding activity. It was found that the host cell machinery that regulates sites of contact between the plasma membrane (PM) and the endoplasmic reticulum (ER) modulates PI4P dynamics on the LCV to control localization of these effectors. Specifically, phosphatidylinositol-4-kinase IIIα (PI4KIIIα) was important for generating a PI4P signature that enabled L. pneumophila effectors to localize to the PM-derived vacuole, and the ER-associated phosphatase Sac1 was involved in metabolizing the PI4P on the vacuole to promote the dissociation of effectors. A defect in L. pneumophila replication in macrophages deficient in PI4KIIIα was observed, highlighting that a PM-derived PI4P signature is critical for biogenesis of a vacuole that supports intracellular multiplication of L. pneumophila. These data indicate that PI4P metabolism by enzymes controlling PM-ER contact sites regulate the association of L. pneumophila effectors to coordinate early stages of vacuole biogenesis.  相似文献   

10.
Ge J  Shao F 《Cellular microbiology》2011,13(12):1870-1880
Legionella pneumophila, the causative agent of Legionnaires' disease, infects and replicates in macrophages and amoebas. Following internalization, L. pneumophila resides in a vacuole structure called Legionella-containing vacuole (LCV). The LCV escapes from the endocytic maturation process and avoids fusion with the lysosome, a hallmark of Legionella pathogenesis. Interference with the secretory vesicle transport and avoiding lysosomal targeting render the LCV permissive for L. pneumophila intracellular replication. Central to L. pneumophila pathogenesis is a defect in the organelle trafficking/intracellular multiplication (Dot/Icm) type IV secretion system that translocates a large number of effector proteins into host cells. Many of the Dot/Icm effectors employ diverse and sophisticated biochemical strategies to manipulate the host vesicular transport system, playing an important role in LCV biogenesis and trafficking. Similar to other bacterial pathogens, L. pneumophila also delivers effector proteins to modulate or counteract host innate immune defence pathways such as the NF-κB and apoptotic signalling. This review summarizes the known functions and mechanisms of Dot/Icm effectors that target host membrane trafficking and innate immune defence pathways.  相似文献   

11.
The causative agent of Legionnaires'' disease, Legionella pneumophila, uses the Icm/Dot type IV secretion system (T4SS) to form in phagocytes a distinct “Legionella-containing vacuole” (LCV), which intercepts endosomal and secretory vesicle trafficking. Proteomics revealed the presence of the small GTPase Ran and its effector RanBP1 on purified LCVs. Here we validate that Ran and RanBP1 localize to LCVs and promote intracellular growth of L. pneumophila. Moreover, the L. pneumophila protein LegG1, which contains putative RCC1 Ran guanine nucleotide exchange factor (GEF) domains, accumulates on LCVs in an Icm/Dot-dependent manner. L. pneumophila wild-type bacteria, but not strains lacking LegG1 or a functional Icm/Dot T4SS, activate Ran on LCVs, while purified LegG1 produces active Ran(GTP) in cell lysates. L. pneumophila lacking legG1 is compromised for intracellular growth in macrophages and amoebae, yet is as cytotoxic as the wild-type strain. A downstream effect of LegG1 is to stabilize microtubules, as revealed by conventional and stimulated emission depletion (STED) fluorescence microscopy, subcellular fractionation and Western blot, or by microbial microinjection through the T3SS of a Yersinia strain lacking endogenous effectors. Real-time fluorescence imaging indicates that LCVs harboring wild-type L. pneumophila rapidly move along microtubules, while LCVs harboring ΔlegG1 mutant bacteria are stalled. Together, our results demonstrate that Ran activation and RanBP1 promote LCV formation, and the Icm/Dot substrate LegG1 functions as a bacterial Ran activator, which localizes to LCVs and promotes microtubule stabilization, LCV motility as well as intracellular replication of L. pneumophila.  相似文献   

12.
13.
Legionella pneumophila is an intracellular pathogen that causes Legionnaire''s disease in humans. This bacterium can be found in freshwater environments as a free‐living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella‐containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER‐derived secretory vesicles and membranes forming the Legionella‐containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α‐helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C‐terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C‐terminal sequence C409WTSFCGLF417. Yeast‐two‐hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.  相似文献   

14.
Delivery of effector proteins is a process widely used by bacterial pathogens to subvert host cell functions and cause disease. Effector delivery is achieved by elaborate injection devices and can often be triggered by environmental stimuli. However, effector export by the L. pneumophila Icm/Dot Type IVB secretion system cannot be detected until the bacterium encounters a target host cell. We used chemical genetics, a perturbation strategy that utilizes small molecule inhibitors, to determine the mechanisms critical for L. pneumophila Icm/Dot activity. From a collection of more than 2,500 annotated molecules we identified specific inhibitors of effector translocation. We found that L. pneumophila effector translocation in macrophages requires host cell factors known to be involved in phagocytosis such as phosphoinositide 3-kinases, actin and tubulin. Moreover, we found that L. pneumophila phagocytosis and effector translocation also specifically require the receptor protein tyrosine phosphate phosphatases CD45 and CD148. We further show that phagocytosis is required to trigger effector delivery unless intimate contact between the bacteria and the host is artificially generated. In addition, real-time analysis of effector translocation suggests that effector export is rate-limited by phagocytosis. We propose a model in which L. pneumophila utilizes phagocytosis to initiate an intimate contact event required for the translocation of pre-synthesized effector molecules. We discuss the need for host cell participation in the initial step of the infection and its implications in the L. pneumophila lifestyle. Chemical genetic screening provides a novel approach to probe the host cell functions and factors involved in host–pathogen interactions.  相似文献   

15.
The Dot/Icm type IVB secretion system (T4BSS) is a pivotal determinant of Legionella pneumophila pathogenesis. L. pneumophila translocate more than 100 effector proteins into host cytoplasm using Dot/Icm T4BSS, modulating host cellular functions to establish a replicative niche within host cells. The T4BSS core complex spanning the inner and outer membranes is thought to be made up of at least five proteins: DotC, DotD, DotF, DotG and DotH. DotH is the outer membrane protein; its targeting depends on lipoproteins DotC and DotD. However, the core complex structure and assembly mechanism are still unknown. Here, we report the crystal structure of DotD at 2.0 Å resolution. The structure of DotD is distinct from that of VirB7, the outer membrane lipoprotein of the type IVA secretion system. In contrast, the C-terminal domain of DotD is remarkably similar to the N-terminal subdomain of secretins, the integral outer membrane proteins that form substrate conduits for the type II and the type III secretion systems (T2SS and T3SS). A short β-segment in the otherwise disordered N-terminal region, located on the hydrophobic cleft of the C-terminal domain, is essential for outer membrane targeting of DotH and Dot/Icm T4BSS core complex formation. These findings uncover an intriguing link between T4BSS and T2SS/T3SS.  相似文献   

16.
The formation and release of outer membrane vesicles (OMVs) is a phenomenon observed in many bacteria, including Legionella pneumophila. During infection, this human pathogen primarily invades alveolar macrophages and replicates within a unique membrane‐bound compartment termed Legionella‐containing vacuole. In the current study, we analysed the membrane architecture of L. pneumophila OMVs by small‐angle X‐ray scattering and biophysically characterized OMV membranes. We investigated the interaction of L. pneumophila OMVs with model membranes by Förster resonance energy transfer and Fourier transform infrared spectroscopy. These experiments demonstrated the incorporation of OMV membrane material into liposomes composed of different eukaryotic phospholipids, revealing an endogenous property of OMVs to fuse with eukaryotic membranes. Cellular co‐incubation experiments showed a dose‐ and time‐dependent binding of fluorophore‐labelled OMVs to macrophages. Trypan blue quenching experiments disclosed a rapid internalization of OMVs into macrophages at 37 and 4°C. Purified OMVs induced tumour necrosis factor‐α production in human macrophages at concentrations starting at 300 ng ml?1. Experiments on HEK293‐TLR2 and TLR4/MD‐2 cell lines demonstrated a dominance of TLR2‐dependent signalling pathways. In summary, we demonstrate binding, internalization and biological activity of L. pneumophila OMVs on human macrophages. Our data support OMV membrane fusion as a mechanism for the remote delivery of virulence factors to host cells.  相似文献   

17.
乙酰化修饰是由乙酰基转移酶、去乙酰化酶介导的可逆的蛋白质翻译后修饰。其中,乙酰基转移酶将乙酰辅酶A的乙酰基团转移至底物蛋白的氨基酸残基,而乙酰基团的去除由去乙酰化酶完成。乙酰化修饰参与许多基本生物学过程的调节作用,越来越多的研究表明,蛋白质乙酰化修饰在病原菌的致病过程中具有重要作用。病原菌,如引起非典型性肺炎的嗜肺军团菌,可以通过分泌具有乙酰基转移酶活性的效应蛋白靶向宿主细胞信号通路的关键蛋白质因子,干扰宿主细胞信号通路及免疫反应。本文主要从嗜肺军团菌的致病机制、乙酰化修饰及乙酰化修饰在病原体致病过程中的调控作用进行综述,突出已知的乙酰化毒力蛋白的例子,并讨论它们如何影响与宿主的相互作用,为理解乙酰化修饰在嗜肺军团菌致病过程中的作用机制提供参考。  相似文献   

18.
Biogenesis of a specialized organelle that supports intracellular replication of Legionella pneumophila involves the fusion of secretory vesicles exiting the endoplasmic reticulum (ER) with phagosomes containing this bacterial pathogen. Here, we investigated host plasma membrane SNARE proteins to determine whether they play a role in trafficking of vacuoles containing L. pneumophila. Depletion of plasma membrane syntaxins by RNA interference resulted in delayed acquisition of the resident ER protein calnexin and enhanced retention of Rab1 on phagosomes containing virulent L. pneumophila, suggesting that these SNARE proteins are involved in vacuole biogenesis. Plasma membrane‐localized SNARE proteins syntaxin 2, syntaxin 3, syntaxin 4 and SNAP23 localized to vacuoles containing L. pneumophila. The ER‐localized SNARE protein Sec22b was found to interact with plasma membrane SNAREs on vacuoles containing virulent L. pneumophila, but not on vacuoles containing avirulent mutants of L. pneumophila. The addition of α‐SNAP and N‐ethylmaleimide‐sensitive factor (NSF) to the plasma membrane SNARE complexes formed by virulent L. pneumophila resulted in the dissociation of Sec22b, indicating functional pairing between these SNAREs. Thus, L. pneumophila stimulates the non‐canonical pairing of plasma membrane t‐SNAREs with the v‐SNARE Sec22b to promote fusion of the phagosome with ER‐derived vesicles. The mechanism by which L. pneumophila promotes pairing of plasma membrane syntaxins and Sec22b could provide unique insight into how the secretory vesicles could provide an additional membrane reserve subverted during phagosome maturation.  相似文献   

19.
20.
Modulation of host cell function is vital for intracellular pathogens to survive and replicate within host cells. Most commonly, these pathogens utilize specialized secretion systems to inject substrates (also called effector proteins) that function as toxins within host cells. Since it would be detrimental for an intracellular pathogen to immediately kill its host cell, it is essential that secreted toxins be inactivated or degraded after they have served their purpose. The pathogen Legionella pneumophila represents an ideal system to study interactions between toxins as it survives within host cells for approximately a day and its Dot/Icm type IVB secretion system (T4SS) injects a vast number of toxins. Previously we reported that the Dot/Icm substrates SidE, SdeA, SdeB, and SdeC (known as the SidE family of effectors) are secreted into host cells, where they localize to the cytoplasmic face of the Legionella containing vacuole (LCV) in the early stages of infection. SidJ, another effector that is unrelated to the SidE family, is also encoded in the sdeC-sdeA locus. Interestingly, while over-expression of SidE family proteins in a wild type Legionella strain has no effect, we found that their over-expression in a ∆sidJ mutant completely inhibits intracellular growth of the strain. In addition, we found expression of SidE proteins is toxic in both yeast and mammalian HEK293 cells, but this toxicity can be suppressed by co-expression of SidJ, suggesting that SidJ may modulate the function of SidE family proteins. Finally, we were able to demonstrate both in vivo and in vitro that SidJ acts on SidE proteins to mediate their disappearance from the LCV, thereby preventing lethal intoxication of host cells. Based on these findings, we propose that SidJ acts as a metaeffector to control the activity of other Legionella effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号