首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Background information. Toxoplasma gondii is among the most successful parasites, with nearly half of the human population chronically infected. T. gondii has five sHsps [small Hsps (heat‐shock proteins)] located in different subcellular compartments. Among them, Hsp20 showed to be localized at the periphery of the parasite body. sHsps are widespread, constituting the most poorly conserved family of molecular chaperones. The presence of sHsps in membrane structures is unusual. Results. The localization of Hsp20 was further analysed using high‐resolution fluorescent light microscopy as well as electron microscopy, which revealed that Hsp20 is associated with the outer surface of the IMC (inner membrane complex), in a set of discontinuous stripes following the same spiralling trajectories as the subpellicular microtubules. The detergent extraction profile of Hsp20 was similar to that of GAP45 [45 kDa GAP (gliding‐associated protein)], a glideosome protein associated with the IMC, but was different from that of IMC1 protein. Although we were unable to detect interacting protein partners of Hsp20 either in normal or stressed tachyzoites, an interaction of Hsp20 with phosphatidylinositol 4‐phosphate and phosphatidylinositol 4,5‐bisphosphate phospholipids could be observed. Conclusions. Hsp20 was shown to be associated with a specialized membranous structure of the parasite, the IMC. This discontinuous striped‐arrangement is unique in T. gondii, indicating that the topology of the outer leaflet of the IMC is not homogeneous.  相似文献   

2.
Apicomplexan parasites harbour unique secretory organelles (dense granules, rhoptries and micronemes) that play essential functions in host infection. Toxoplasma gondii parasites seem to possess an atypical endosome‐like compartment, which contains an assortment of proteins that appear to be involved in vesicular sorting and trafficking towards secretory organelles. Recent studies highlighted the essential roles of many regulators such as Rab5A, Rab5C, sortilin‐like receptor and syntaxin‐6 in secretory organelle biogenesis. However, little is known about the protein complexes that recruit Rab‐GTPases and SNAREs for membrane tethering in Apicomplexa. In mammals and yeast, transport, tethering and fusion of vesicles from early endosomes to lysosomes and the vacuole, respectively, are mediated by CORVET and HOPS complexes, both built on the same Vps‐C core that includes Vps11 protein. Here, we show that a T. gondii Vps11 orthologue is essential for the biogenesis or proper subcellular localization of secretory organelle proteins. TgVps11 is a dynamic protein that associates with Golgi endosomal‐related compartments, the vacuole and immature apical secretory organelles. Conditional knock‐down of TgVps11 disrupts biogenesis of dense granules, rhoptries and micronemes. As a consequence, parasite motility, invasion, egress and intracellular growth are affected. This phenotype was confirmed with additional knock‐down mutants of the HOPS complex. In conclusion, we show that apicomplexan parasites use canonical regulators of the endolysosome system to accomplish essential parasite‐specific functions in the biogenesis of their unique secretory organelles.  相似文献   

3.
The phylum Apicomplexa includes a number of significant human pathogens like Toxoplasma gondii and Plasmodium species. These obligate intracellular parasites possess a membranous structure, the inner membrane complex (IMC), composed of flattened vesicles apposed to the plasma membrane. Numerous proteins associated with the IMC are anchored via a lipid post‐translational modification termed palmitoylation. This acylation is catalysed by multi‐membrane spanning protein S‐acyl‐transferases (PATs) containing a catalytic Asp‐His‐His‐Cys (DHHC) motif, commonly referred to as DHHCs. Contrasting the redundancy observed in other organisms, several PATs are essential for T. gondii tachyzoite survival; 2 of them, TgDHHC2 and TgDHHC14 being IMC‐resident. Disruption of either of these TgDHHCs results in a rapid collapse of the IMC in the developing daughter cells leading to dramatic morphological defects of the parasites while the impact on the other organelles is limited to their localisation but not to their biogenesis. The acyl‐transferase activity of TgDHHC2 and TgDHHC14 is involved sequentially in the formation of the sub‐compartments of the IMC. Investigation of proteins known to be palmitoylated and localised to these sub‐compartments identified TgISP1/3 as well as TgIAP1/2 to lose their membrane association revealing them as likely substrates of TgDHHC2, while these proteins are not impacted by TgDHHC14 depletion.  相似文献   

4.
Members of the phylum Apicomplexa are motile and rapidly dividing intracellular parasites, able to occupy a large spectrum of niches by infecting diverse hosts and invading various cell types. As obligate intracellular parasites, most apicomplexans only survive for a short period extracellularly, and, during this time, have a high energy demand to power gliding motility and invasion into new host cells. Similarly, these fast‐replicating intracellular parasites are critically dependent on host‐cell nutrients as energy and carbon sources, noticeably for the extensive membrane biogenesis imposed during growth and division. To access host‐cell metabolites, the apicomplexans Toxoplasma gondii and Plasmodium falciparum have evolved strategies that exquisitely reflect adaptation to their respective niches. In the present review, we summarize and compare some recent findings regarding the energetic metabolism and carbon sources used by these two genetically tractable apicomplexans during host‐cell invasion and intracellular growth and replication.  相似文献   

5.
The apical annuli are among the most intriguing and understudied structures in the cytoskeleton of the apicomplexan parasite Toxoplasma gondii. We mapped the proteome of the annuli in Toxoplasma by reciprocal proximity biotinylation (BioID), and validated five apical annuli proteins (AAP1–5), Centrin2, and an apical annuli methyltransferase. Moreover, inner membrane complex (IMC) suture proteins connecting the alveolar vesicles were also detected and support annuli residence within the sutures. Super‐resolution microscopy identified a concentric organisation comprising four rings with diameters ranging from 200 to 400 nm. The high prevalence of domain signatures shared with centrosomal proteins in the AAPs together with Centrin2 suggests that the annuli are related and/or derived from the centrosomes. Phylogenetic analysis revealed that the AAPs are conserved narrowly in coccidian, apicomplexan parasites that multiply by an internal budding mechanism. This suggests a role in replication, for example, to provide pores in the mother IMC permitting exchange of building blocks and waste products. However, presence of multiple signalling domains and proteins are suggestive of additional functions. Knockout of AAP4, the most conserved compound forming the largest ring‐like structure, modestly decreased parasite fitness in vitro but had no significant impact on acute virulence in vivo. In conclusion, the apical annuli are composed of coiled‐coil and signalling proteins assembled in a pore‐like structure crossing the IMC barrier maintained during internal budding.  相似文献   

6.
The intracellular protozoan parasite Toxoplasma gondii divides by a unique process of internal budding that involves the assembly of two daughter cells within the mother. The cytoskeleton of Toxoplasma, which is composed of microtubules associated with an inner membrane complex (IMC), has an important role in this process. The IMC, which is directly under the plasma membrane, contains a set of flattened membranous sacs lined on the cytoplasmic side by a network of filamentous proteins. This network contains a family of intermediate filament‐like proteins or IMC proteins. In order to elucidate the division process, we have characterized a 14‐member subfamily of Toxoplasma IMC proteins that share a repeat motif found in proteins associated with the cortical alveoli in all alveolates. By creating fluorescent protein fusion reporters for the family members we determined the spatiotemporal patterns of all 14 IMC proteins through tachyzoite development. This revealed several distinct distribution patterns and some provide the basis for novel structural models such as the assembly of certain family members into the basal complex. Furthermore we identified IMC15 as an early marker of budding and, lastly, the dynamic patterns observed throughout cytokinesis provide a timeline for daughter parasite development and division.  相似文献   

7.
Membrane microdomains or rafts, sterol- and sphingolipid-rich microdomains in the plasma membrane have been studied extensively in mammalian cells. Recently, rafts were found to mediate virulence in a variety of parasites, including Toxoplasma gondii. However, it has been difficult to examine a two-dimensional distribution of lipid molecules at a nanometer scale. We tried to determine the distribution of glycosphingolipids GM1 and GM3, putative raft components in the T. gondii cell membrane in this study, using a rapid-frozen and freeze-fractured immuno-electron microscopy method. This method physically stabilized molecules in situ, to minimize the probability of artefactual disruption. Labeling of GM3, but not GM1, was observed in the exoplasmic (or luminal), but not the cytoplasmic, leaflet of the inner membrane complex (IMC) in T. gondii infected in human foreskin fibroblast-1 (HFF-1). No labeling was detected in any leaflet of the T. gondii plasma membrane. In contrast to HFF-1, T. gondii infected in mouse fibroblast (MF), labelings of both GM1 and GM3 were detected in the IMC luminal leaflet, although GM1′s gold labeling density was very low. The same freeze-fracture EM method showed that both GM1 and GM3 were expressed in the exoplasmic leaflet of the MF plasma membrane. However, labeling of only GM3, but not GM1, was detected in the exoplasmic leaflet of the HFF-1 plasma membrane. These results suggest that GM1 or GM3, localized in the IMC, is obtained from the plasma membranes of infected host mammalian cells. Furthermore, the localization of microdomains or rafts in the luminal leaflets of the intracellular confined space IMC organelle of T. gondii suggests a novel characteristic of rafts.  相似文献   

8.
Apicomplexan parasites express various calcium‐dependent protein kinases (CDPKs), and some of them play essential roles in invasion and egress. Five of the six CDPKs conserved in most Apicomplexa have been studied at the molecular and cellular levels in Plasmodium species and/or in Toxoplasma gondii parasites, but the function of CDPK7 was so far uncharacterized. In T. gondii, during intracellular replication, two parasites are formed within a mother cell through a unique process called endodyogeny. Here we demonstrate that the knock‐down of CDPK7 protein in T. gondii results in pronounced defects in parasite division and a major growth deficiency, while it is dispensable for motility, egress and microneme exocytosis. In cdpk7‐depleted parasites, the overall DNA content was not impaired, but the polarity of daughter cells budding and the fate of several subcellular structures or proteins involved in cell division were affected, such as the centrosomes and the kinetochore. Overall, our data suggest that CDPK7 is crucial for proper maintenance of centrosome integrity required for the initiation of endodyogeny. Our findings provide a first insight into the probable role of calcium‐dependent signalling in parasite multiplication, in addition to its more widely explored role in invasion and egress.  相似文献   

9.
Apicomplexans are a diverse group of obligate parasites occupying different intracellular niches that require modification to meet the needs of the parasite. To efficiently manipulate their environment, apicomplexans translocate numerous parasite proteins into the host cell. Whereas some parasites remain contained within a parasitophorous vacuole membrane (PVM) throughout their developmental cycle, others do not, a difference that affects the machinery needed for protein export. A signal‐mediated pathway for protein export into the host cell has been characterized in Plasmodium parasites, which maintain the PVM. Here, we functionally demonstrate an analogous host‐targeting pathway involving organellar staging prior to secretion in the related bovine parasite, Babesia bovis, a parasite that destroys the PVM shortly after invasion. Taking into account recent identification of a similar signal‐mediated pathway in the coccidian parasite Toxoplasma gondii, we suggest a model in which this conserved pathway has evolved in multiple steps from signal‐mediated trafficking to specific secretory organelles for controlled secretion to a complex protein translocation process across the PVM.  相似文献   

10.
Toxoplasma gondii is an obligatory intracellular apicomplexan parasite which exploits host cell surface components in cell invasion and intracellular parasitization. Sulfated glycans such as heparin and heparan sulfate have been reported to inhibit cell invasion by T. gondii and other apicomplexan parasites such as Plasmodium falciparum. The aim of this study was to investigate the heparin‐binding proteome of T. gondii. The parasite‐derived components were affinity‐purified on the heparin moiety followed by MS fingerprinting of the proteins. The heparin‐binding proteins of T. gondii and P. falciparum were compared based on functionality and affinity to heparin. Among the proteins identified, the invasion‐related parasite ligands derived from tachyzoite/merozoite surface and the secretory organelles were prominent. However, the profiles of the proteins were different in terms of affinity to heparin. In T. gondii, the proteins with highest affinity to heparin were the intracellular components with functions of parasite development contrasted to that of P. falciparum, of which the rhoptry‐derived proteins were prominently identified. The profiling of the heparin‐binding proteins of the two apicomplexan parasites not only explained the mechanism of heparin‐mediated host cell invasion inhibition, but also, to a certain extent, revealed that the action of heparin on the parasite extended after endocytosis.  相似文献   

11.
Toxoplasma gondii Hsp20 is a pellicle-associated functional chaperone whose biological role is still unknown. Hsp20 is present in different apicomplexan parasites, showing a high degree of conservation across the phylum, with Neospora caninum Hsp20 presenting an 82% identity to that of T. gondii. Hence rabbit anti-T. gondii Hsp20 serum was able to recognize the N. caninum counterpart. Interestingly, both N. caninum and T. gondii Hsp20 localized to the inner membrane complex and to the plasma membrane. Incubation of T. gondii and N. caninum tachyzoites with an anti-TgHsp20 serum reduced parasite invasion at rates of 57.23% and 54.7%, respectively. This anti-serum also reduced T. gondii gliding 48.7%. Together, all this data support a role for Hsp20 in parasite invasion and gliding motility.  相似文献   

12.
The Toxoplasma inner membrane complex (IMC) is a specialized organelle underlying the parasite's plasma membrane that consists of flattened rectangular membrane sacs that are sutured together and positioned atop a supportive cytoskeleton. We have previously identified a novel class of proteins localizing to the transverse and longitudinal sutures of the IMC, which we named IMC sutures components (ISCs). Here, we have used proximity‐dependent biotin identification at the sutures to better define the composition of this IMC subcompartment. Using ISC4 as bait, we demonstrate biotin‐dependent labeling of the sutures and have uncovered two new ISCs. We also identified five new proteins that exclusively localize to the transverse sutures that we named transverse sutures components (TSCs), demonstrating that components of the IMC sutures consist of two groups: those that localize to the transverse and longitudinal sutures (ISCs) and those residing only in the transverse sutures (TSCs). In addition, we functionally analyze the ISC protein ISC3 and demonstrate that ISC3‐null parasites have morphological defects and reduced fitness in vitro. Most importantly, Δisc3 parasites exhibit a complete loss of virulence in vivo. These studies expand the known composition of the IMC sutures and highlight the contribution of ISCs to the ability of the parasite to proliferate and cause disease.  相似文献   

13.
Many members of the phylum of Apicomplexa have adopted an obligate intracellular life style and critically depend on active invasion and egress from the infected cells to complete their lytic cycle. Toxoplasma gondii belongs to the coccidian subgroup of the Apicomplexa, and as such, the invasive tachyzoite contains an organelle termed the conoid at its extreme apex. This motile organelle consists of a unique polymer of tubulin fibres and protrudes in both gliding and invading parasites. The class XIV myosin A, which is conserved across the Apicomplexa phylum, is known to critically contribute to motility, invasion and egress from infected cells. The MyoA-glideosome is anchored to the inner membrane complex (IMC) and is assumed to translocate the components of the circular junction secreted by the micronemes and rhoptries, to the rear of the parasite. Here we comprehensively characterise the class XIV myosin H (MyoH) and its associated light chains. We show that the 3 alpha-tubulin suppressor domains, located in MyoH tail, are necessary to anchor this motor to the conoid. Despite the presence of an intact MyoA-glideosome, conditional disruption of TgMyoH severely compromises parasite motility, invasion and egress from infected cells. We demonstrate that MyoH is necessary for the translocation of the circular junction from the tip of the parasite, where secretory organelles exocytosis occurs, to the apical position where the IMC starts. This study attributes for the first time a direct function of the conoid in motility and invasion, and establishes the indispensable role of MyoH in initiating the first step of motility along this unique organelle, which is subsequently relayed by MyoA to enact effective gliding and invasion.  相似文献   

14.
Membrane skeletons are cytoskeletal elements that have important roles in cell development, shape, and structural integrity. Malaria parasites encode a conserved family of putative membrane skeleton proteins related to articulins. One member, IMC1a, is expressed in sporozoites and localizes to the pellicle, a unique membrane complex believed to form a scaffold onto which the ligands and glideosome are arranged to mediate parasite motility and invasion. IMC1b is a closely related structural paralogue of IMC1a, fostering speculation that it could be functionally homologous but in a different invasive life stage. Here we have generated genetically modified parasites that express IMC1b tagged with green fluorescent protein, and we show that it is targeted exclusively to the pellicle of ookinetes. We also show that IMC1b-deficient ookinetes display abnormal cell shape, reduced gliding motility, decreased mechanical strength, and reduced infectivity. These findings are consistent with a membrane skeletal role of IMC1b and provide strong experimental support for the view that membrane skeletons form an integral part of the pellicle of apicomplexan zoites and function to provide rigidity to the pellicular membrane complex. The similarities observed between the loss-of-function phenotypes of IMC1a and IMC1b show that membrane skeletons of ookinetes and sporozoites function in an overall similar way. However, the fact that ookinetes and sporozoites do not use the same IMC1 protein implies that different mechanical properties are required of their respective membrane skeletons, likely reflecting the distinct environments in which these life stages must operate.  相似文献   

15.
Host cell entry by the Apicomplexa is associated with the sequential secretion of invasion factors from specialized apical organelles. Secretion of micronemal proteins (MICs) complexes by Toxoplasma gondii facilitates parasite gliding motility, host cell attachment and entry, as well as egress from infected cells. The shedding of MICs during these steps is mediated by micronemal protein proteases MPP1, MPP2 and MPP3. The constitutive activity of MPP1 leads to the cleavage of transmembrane MICs and is linked to the surface rhomboid protease 4 (ROM4) and possibly to rhomboid protease 5 (ROM5). To determine their importance and respective contribution to MPP1 activity, in this study ROM4 and ROM5 genes were abrogated using Cre‐recombinase and CRISPR‐Cas9 nuclease, respectively, and shown to be dispensable for parasite survival. Parasites lacking ROM4 predominantly engage in twirling motility and exhibit enhanced attachment and impaired invasion, whereas intracellular growth and egress is not affected. The substrates MIC2 and MIC6 are not cleaved in rom4‐ko parasites, in contrast, intramembrane cleavage of AMA1 is reduced but not completely abolished. Shedding of MICs and invasion are not altered in the absence of ROM5; however, this protease responsible for the residual cleavage of AMA1 is able to cleave other AMA family members and exhibits a detectable contribution to invasion in the absence of ROM4.  相似文献   

16.
Alveolins, or inner membrane complex (IMC) proteins, are components of the subpellicular network that forms a structural part of the pellicle of malaria parasites. In Plasmodium berghei, deletions of three alveolins, IMC1a, b, and h, each resulted in reduced mechanical strength and gliding velocity of ookinetes or sporozoites. Using time lapse imaging, we show here that deletion of IMC1h (PBANKA_143660) also has an impact on the directionality and motility behaviour of both ookinetes and sporozoites. Despite their marked motility defects, sporozoites lacking IMC1h were able to invade mosquito salivary glands, allowing us to investigate the role of IMC1h in colonisation of the mammalian host. We show that IMC1h is essential for sporozoites to progress through the dermis in vivo but does not play a significant role in hepatoma cell transmigration and invasion in vitro. Colocalisation of IMC1h with the residual IMC in liver stages was detected up to 30 hours after infection and parasites lacking IMC1h showed developmental defects in vitro and a delayed onset of blood stage infection in vivo. Together, these results suggest that IMC1h is involved in maintaining the cellular architecture which supports normal motility behaviour, access of the sporozoites to the blood stream, and further colonisation of the mammalian host.  相似文献   

17.
Up-regulation of the membrane-bound efflux pump P-glycoprotein (P-gp) is associated with the phenomenon of multidrug-resistance in pathogenic organisms, including protozoan parasites. In addition, P-gp plays a role in normal physiological processes, however our understanding of these P-gp functions remains limited. In this study we investigated the effects of the P-gp inhibitor GF120918 in Toxoplasma gondii, a model apicomplexan parasite and an important human pathogen. We found that GF120918 treatment severely inhibited parasite invasion and replication. Further analyses of the molecular mechanisms involved revealed that the P-gp inhibitor modulated parasite motility, microneme secretion and egress from the host cell, all cellular processes known to depend on Ca2+ signaling in the parasite. In support of a potential role of P-gp in Ca2+-mediated processes, immunoelectron and fluorescence microscopy showed that T. gondii P-gp was localized in acidocalcisomes, the major Ca2+ storage in the parasite, at the plasma membrane, and in the intravacuolar tubular network. In addition, metabolic labeling of extracellular parasites revealed that inhibition or down-regulation of T. gondii P-gp resulted in aberrant lipid synthesis. These results suggest a crucial role of T. gondii P-gp in essential processes of the parasite biology and further validate the potential of P-gp activity as a target for drug development.  相似文献   

18.
Toxoplasma gondii causes retinitis and encephalitis. Avoiding targeting by autophagosomes is key for its survival because T. gondii cannot withstand lysosomal degradation. During invasion of host cells, T. gondii triggers epidermal growth factor receptor (EGFR) signalling enabling the parasite to avoid initial autophagic targeting. However, autophagy is a constitutive process indicating that the parasite may also use a strategy operative beyond invasion to maintain blockade of autophagic targeting. Finding that such a strategy exists would be important because it could lead to inhibition of host cell signalling as a novel approach to kill the parasite in previously infected cells and treat toxoplasmosis. We report that T. gondii induced prolonged EGFR autophosphorylation. This effect was mediated by PKCα/PKCβ ? Src because T. gondii caused prolonged activation of these molecules and their knockdown or incubation with inhibitors of PKCα/PKCβ or Src after host cell invasion impaired sustained EGFR autophosphorylation. Addition of EGFR tyrosine kinase inhibitor (TKI) to previously infected cells led to parasite entrapment by LC3 and LAMP‐1 and pathogen killing dependent on the autophagy proteins ULK1 and Beclin 1 as well as lysosomal enzymes. Administration of gefitinib (EGFR TKI) to mice with ocular and cerebral toxoplasmosis resulted in disease control that was dependent on Beclin 1. Thus, T. gondii promotes its survival through sustained EGFR signalling driven by PKCα/β ? Src, and inhibition of EGFR controls pre‐established toxoplasmosis.  相似文献   

19.
Calcium signalling coordinates motility, cell invasion, and egress by apicomplexan parasites, yet the key mediators that transduce these signals remain largely unknown. One underlying assumption is that invasion into and egress from the host cell depend on highly similar systems to initiate motility. Using a chemical‐genetic approach to specifically inhibit select calcium‐dependent kinases (CDPKs), we instead demonstrate that these pathways are controlled by different kinases: both TgCDPK1 and TgCDPK3 were required during ionophore‐induced egress, but only TgCDPK1 was required during invasion. Similarly, microneme secretion, which is necessary for motility during both invasion and egress, universally depended on TgCDPK1, but only exhibited TgCDPK3 dependence when triggered by certain stimuli. We also demonstrate that egress likely comes under a further level of control by cyclic GMP‐dependent protein kinase and that its activation can induce egress and partially compensate for the inhibition of TgCDPK3. These results demonstrate that separate signalling pathways are integrated to regulate motility in response to the different signals that promote invasion or egress during infection by Toxoplasma gondii.  相似文献   

20.
As the Plasmodium parasite transitions between mammalian and mosquito host, it has to adjust quickly to new environments. Palmitoylation, a reversible and dynamic lipid post‐translational modification, plays a central role in regulating this process and has been implicated with functions for parasite morphology, motility and host cell invasion. While proteins associated with the gliding motility machinery have been described to be palmitoylated, no palmitoyl transferase responsible for regulating gliding motility has previously been identified. Here, we characterize two palmityol transferases with gene tagging and gene deletion approaches. We identify DHHC3, a palmitoyl transferase, as a mediator of ookinete development, with a crucial role for gliding motility in ookinetes and sporozoites, and we co‐localize the protein with a marker for the inner membrane complex in the ookinete stage. Ookinetes and sporozoites lacking DHHC3 are impaired in gliding motility and exhibit a strong phenotype in vivo; with ookinetes being significantly less infectious to their mosquito host and sporozoites being non‐infectious to mice. Importantly, genetic complementation of the DHHC3‐ko parasite completely restored virulence. We generated parasites lacking both DHHC3, as well as the palmitoyl transferase DHHC9, and found an enhanced phenotype for these double knockout parasites, allowing insights into the functional overlap and compensational nature of the large family of PbDHHCs. These findings contribute to our understanding of the organization and mechanism of the gliding motility machinery, which as is becoming increasingly clear, is mediated by palmitoylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号