首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Interleukin (IL)‐31 is important for innate immunity in mucosal tissues and skin, and increased IL‐31 expression participates in the pathogenesis of chronic inflammatory diseases affecting the skin, airways, lungs, and intestines. We investigated the contribution of mast cells to the induction of IL‐31 production following infection with the periodontal pathogen, Porphyromonas gingivalis. We found that oral infection with P. gingivalis increased IL‐31 expression in the gingival tissues of wild‐type mice but not in those of mast cell‐deficient mice. The P. gingivalis‐induced IL‐31 production by human mast cells occurred through the activation of the JNK and NF‐κB signalling pathways and was dependent on the P. gingivalis lysine‐specific protease gingipain‐K. P. gingivalis infection induced IL‐31 receptor α and oncostatin M receptor β expression in human gingival epithelial cells. Notably, the P. gingivalis‐induced IL‐31 production by mast cells led to the downregulation of claudin‐1, a tight junction molecule, in gingival epithelial cells, resulting in an IL‐31‐dependent increase in the paracellular permeability of the gingival epithelial barrier. These findings suggest that IL‐31 produced by mast cells in response to P. gingivalis infection causes gingival epithelial barrier dysfunction, which may contribute to the chronic inflammation observed in periodontitis.  相似文献   

2.
3.
We have previously shown that a homologue of a conserved nucleoside‐diphosphate‐kinase (Ndk) family of multifunctional enzymes and secreted molecule in Porphyromonas gingivalis can modulate select host molecular pathways including downregulation of reactive‐oxygen‐species generation to promote bacterial survival in human gingival epithelial cells (GECs). In this study, we describe a novel kinase function for bacterial effector, Pgingivalis‐Ndk, in abrogating epithelial cell death by phosphorylating heat‐shock protein 27 (HSP27) in GECs. Infection by Pgingivalis was recently suggested to increase phosphorylation of HSP27 in cancer‐epithelial cells; however, the mechanism and biological significance of antiapoptotic phospho‐HSP27 during infection has never been characterised. Interestingly, using glutathione S‐transferase‐rNdk pull‐down analysed by mass spectrometry, we identified HSP27 in GECs as a strong binder of Pgingivalis‐Ndk and further verified using confocal microscopy and ELISA. Therefore, we hypothesised Pgingivalis‐Ndk can phosphorylate HSP27 for inhibition of apoptosis in GECs. We further employed Pgingivalis‐Ndk protein constructs and an isogenic Pgingivalis‐ndk‐deficient‐mutant strain for functional examination. Pgingivalis‐infected GECs displayed significantly increased phospho‐HSP27 compared with ndk‐deficient‐strain during 24 hr infection. Phospho‐HSP27 was significantly increased by transfection of GFP‐tagged‐Ndk into uninfected‐GECs, and in vitro phosphorylation assays revealed direct phosphorylation of HSP27 at serines 78 and 82 by Pgingivalis‐Ndk. Depletion of HSP27 via siRNA significantly reversed resistance against staurosporine‐mediated‐apoptosis during infection. Transfection of recombinant Pgingivalis‐Ndk protein into GECs substantially decreased staurosporine‐induced‐apoptosis. Finally, ndk‐deficient‐mutant strain was unable to inhibit staurosporine‐induced Cytochrome C release/Caspase‐9 activation. Thus, we show for the first time the phosphorylation of HSP27 by a bacterial effector—Pgingivalis‐Ndk—and a novel function of Ndks that is directly involved in inhibition of host cell apoptosis and the subsequent bacterial survival.  相似文献   

4.
Porphyromonas gingivalis utilizes its major proteases, Arg gingipains (RgpA and RgpB) and Lys gingipain (Kgp), for dysregulation of host immune systems. The aim of this study was to investigate the roles of gingipains in caspase‐1 activation and its sequelae in P. gingivalis‐infected macrophages. Infection with P. gingivalis at low multiplicity of infections (MOIs), but not at high MOIs, resulted in low levels of interleukin‐1β and lactate dehydrogenase without detectable active caspase‐1 in the culture supernatants. The proteins released from caspase‐1‐activated cells were rapidly degraded by gingipains. However, P. gingivalis with gingipains induced higher intracellular caspase‐1 activity in the infected cells than the gingipain‐null mutant, which was associated with ATP release from the infected cells. In addition, growing the gingipain‐null mutant with gingipains enhanced caspase‐1 activation by the mutant. In contrast, inhibition of the protease activity of Kgp or Rgps increased the caspase‐1‐activating potential of wild‐type P. gingivalis, indicating an inhibitory effect of the collaborative action of Kgp and Rgps. These results illuminate the contradictory roles of gingipains in the manipulation of host defence systems by P. gingivalis, as they act by both stimulating and inhibiting innate immune responses.  相似文献   

5.
6.
7.
Photodynamic therapy (PDT) with a recently developed photosensitizer Zn‐BC‐AM was found to effectively induce apoptosis in a well‐differentiated nasopharyngeal carcinoma (NPC) HK‐1 cell line. Sustained activation of p38 mitogen‐activated protein kinase (MAPK) and c‐jun N‐terminal kinase (JNK) as well as a transient increase in activation of extracellular signal‐regulated kinase (ERK) were observed immediately after Zn‐BC‐AM PDT. A commonly used p38 MAPK/JNK pharmacological inhibitor PD169316 was found to reduce PDT‐induced apoptosis of HK‐1 cells. PD169316 also prevented the loss of Bcl‐2 and Bcl‐xL in PDT‐treated HK‐1 cells. However, inhibition of JNK with SP600125 had no effect on Zn‐BC‐AM PDT‐induced apoptosis while inhibition of ERK with PD98059 or p38 MAPK with SB203580 significantly increased Zn‐BC‐AM PDT‐induced apoptosis. Further study showed that knockdown of the p38β isoform with siRNA also increased Zn‐BC‐AM PDT‐induced apoptosis, indicating that the anti‐apoptotic effect of PD169316 in PDT‐treated HK‐1 cells was probably independent of p38 MAPK or JNK activation. Taken together, the results suggest that inhibition of p38β and ERK may enhance the therapeutic efficacy of Zn‐BC‐AM PDT on NPC cells. It should be noted that data only based on the use of PD169316 should be interpreted in caution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Pancreatic β‐cell death or dysfunction mediated by oxidative stress underlies the development and progression of diabetes mellitus (DM). In this study, we evaluated the effect of lentinan (LNT), an active ingredient purified from the bodies of Lentinus edodes, on pancreatic β‐cell apoptosis and dysfunction caused by streptozotocin (STZ) and the possible mechanisms implicated. The rat insulinoma cell line INS‐1 were pre‐treated with the indicated concentration of LNT for 30 min. and then incubated for 24 hrs with or without 0.5 mM STZ. We found that STZ treatment causes apoptosis of INS‐1 cells by enhancement of intracellular reactive oxygen species (ROS) accumulation, inducible nitric oxide synthase (iNOS) expression and nitric oxide release and activation of the c‐jun N‐terminal kinase (JNK) and p38 mitogen‐activated protein kinase (MAPK) signalling pathways. However, LNT significantly increased cell viability and effectively attenuated STZ‐induced ROS production, iNOS expression and nitric oxide release and the activation of JNK and p38 MAPK in a dose‐dependent manner in vitro. Moreover, LNT dose‐dependently prevented STZ‐induced inhibition of insulin synthesis by blocking the activation of nuclear factor kappa beta and increasing the level of Pdx‐1 in INS‐1 cells. Together these findings suggest that LNT could protect against pancreatic β‐cell apoptosis and dysfunction caused by STZ and therefore may be a potential pharmacological agent for preventing pancreatic β‐cell damage caused by oxidative stress associated with diabetes.  相似文献   

9.
Interferon (IFN)‐induced signalling pathways have essential functions in innate immune responses. In response to type I IFNs, filamin B tethers RAC1 and a Jun N‐terminal kinase (JNK)‐specific mitogen‐activated protein kinase (MAPK) module—MEKK1, MKK4 and JNK—and thereby promotes the activation of JNK and JNK‐mediated apoptosis. Here, we show that type I IFNs induce the conjugation of filamin B by interferon‐stimulated gene 15 (ISG15). ISGylation of filamin B led to the release of RAC1, MEKK1 and MKK4 from the scaffold protein and thus to the prevention of sequential activation of the JNK cascade. By contrast, blockade of filamin B ISGylation by substitution of Lys 2467 with arginine or by knockdown of ubiquitin‐activating enzyme E1‐like (UBEL1) prevented the release of the signalling molecules from filamin B, resulting in persistent promotion of JNK activation and JNK‐mediated apoptosis. These results indicate that filamin B ISGylation acts as a negative feedback regulatory gate for the desensitization of type I IFN‐induced JNK signalling.  相似文献   

10.
Malignant mesothelioma is an aggressive tumor of serosal surfaces, which is refractory to current treatment options. Arsenic trioxide (As2O3) is used clinically to treat acute promyelocytic leukemia, and also to inhibit proliferation of several solid tumors including hepatoma, esophageal, and gastric cancer in vitro. Here we found that As2O3 inhibited cell viability of a mesothelioma cell line, NCI‐H2052. As2O3 induced apoptosis of NCI‐H2052 cells, which was accompanied by activation of c‐Jun NH2‐terminal kinase (JNK)1/2, extracellular signal‐regulated kinase (ERK)1/2, and caspase‐3. zVAD‐fmk, a broad‐spectrum caspase inhibitor, inhibited As2O3‐induced apoptosis and activation of caspase‐3, but not that of JNK1/2 and ERK1/2. Small interfering RNAs (siRNAs) targeting JNK1/2 suppressed As2O3‐induced caspase‐3 activation and apoptosis, indicating that JNK1/2 regulate As2O3‐induced apoptosis though caspase cascade. Furthermore, JNK1 siRNA abrogated As2O3‐induced JNK2 phosphorylation and JNK2 siRNA abrogated As2O3‐induced JNK1 phosphorylation, suggesting that JNK1 and JNK2 interact with each other. Moreover, JNK1 siRNA, but not JNK2 siRNA, abrogated As2O3‐induced ERK1/2 phosphorylation. JNK2 siRNA together with PD98059, a specific MAPK/ERK kinase inhibitor, suppressed As2O3‐induced apoptosis more significantly than JNK2 siRNA alone. These results indicated that As2O3 induces apoptosis of NCI‐H2052 cells mainly through JNK1/2 activation, and that ERK1/2 is involved in As2O3‐induced apoptosis when JNK1/2 are inactivated. J. Cell. Physiol. 226: 762–768, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
Gingival junctional epithelial cell apoptosis caused by periodontopathic bacteria exacerbates periodontitis. This pathological apoptosis is involved in the activation of transforming growth factor β (TGF‐β). However, the molecular mechanisms by which microbes induce the activation of TGF‐β remain unclear. We previously reported that Aggregatibacter actinomycetemcomitans (Aa) activated TGF‐β receptor (TGF‐βR)/smad2 signalling to induce epithelial cell apoptosis, even though Aa cannot bind to TGF‐βR. Additionally, outer membrane protein 29 kDa (Omp29), a member of the Aa Omps family, can induce actin rearrangements via focal adhesion kinase (FAK) signalling, which also plays a role in the activation of TGF‐β by cooperating with integrin. Accordingly, we hypothesized that Omp29‐induced actin rearrangements via FAK activity would enhance the activation of TGF‐β, leading to gingival epithelial cell apoptosis in vitro. By using human gingival epithelial cell line OBA9, we found that Omp29 activated TGF‐βR/smad2 signalling and decreased active TGF‐β protein levels in the extracellular matrix (ECM) of cell culture, suggesting the transactivation of TGF‐βR. Inhibition of actin rearrangements by cytochalasin D or blebbistatin and knockdown of FAK or integrinβ1 expression by siRNA transfection attenuated TGF‐βR/smad2 signalling activity and reduction of TGF‐β levels in the ECM caused by Omp29. Furthermore, Omp29 bound to fibronectin (Fn) to induce its aggregation on integrinβ1, which is associated with TGF‐β signalling activity. All the chemical inhibitors and siRNAs tested blocked Omp29‐induced OBA9 cells apoptosis. These results suggest that Omp29 binds to Fn in order to facilitate Fn/integrinβ1/FAK signalling‐dependent TGF‐β release from the ECM, thereby inducing gingival epithelial cell apoptosis via TGF‐βR/smad2 pathway.  相似文献   

12.
13.
14.
Bacterial pathogens can induce an inflammatory response from epithelial tissues due to secretion of the pro‐inflammatory chemokine interleukin‐8 (IL‐8). Many bacterial pathogens manipulate components of the focal complex (FC) to induce signalling events in host cells. We examined the interaction of several bacterial pathogens with host cells, including Campylobacter jejuni, to determine if the FC is required for induction of chemokine signalling in response to bacterial pathogens. Our data indicate that secretion of IL‐8 is triggered by C. jejuni, Helicobacter pylori and Salmonella enterica serovar Typhimurium in response to engagement of β1 integrins. Additionally, we found that the secretion of IL‐8 from C. jejuni infected epithelial cells requires FAK, Src and paxillin, which in turn are necessary for Erk 1/2 recruitment and activation. Targeting the FC component paxillin with siRNA prevented IL‐8 secretion from cells infected with several bacterial pathogens, including C. jejuni, Helicobacter pylori, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. Our findings indicate that maximal IL‐8 secretion from epithelial cells in response to bacterial infection is dependent on the FC. Based on the commonality of the host response to bacterial pathogens, we propose that the FC is a signalling platform for an epithelial cell response to pathogenic organisms.  相似文献   

15.
16.
17.
18.
19.
20.
Production of IL‐1β typically requires two‐separate signals. The first signal, from a pathogen‐associated molecular pattern, promotes intracellular production of immature cytokine. The second signal, derived from a danger signal such as extracellular ATP, results in assembly of an inflammasome, activation of caspase‐1 and secretion of mature cytokine. The inflammasome component, Nalp3, plays a non‐redundant role in caspase‐1 activation in response to ATP binding to P2X7 in macrophages. Gingival epithelial cells (GECs) are an important component of the innate‐immune response to periodontal bacteria. We had shown that GECs express a functional P2X7 receptor, but the ability of GECs to secrete IL‐1β during infection remained unknown. We find that GECs express a functional Nalp3 inflammasome. Treatment of GECs with LPS or infection with the periodontal pathogen, Porphyromonas gingivalis, induced expression of the il‐1β gene and intracellular accumulation of IL‐1β protein. However, IL‐1β was not secreted unless LPS‐treated or infected cells were subsequently stimulated with ATP. Conversely, caspase‐1 is activated in GECs following ATP treatment but not P. gingivalis infection. Furthermore, depletion of Nalp3 by siRNA abrogated the ability of ATP to induce IL‐1β secretion in infected cells. The Nalp3 inflammasome is therefore likely to be an important mediator of the inflammatory response in gingival epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号