首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The following labeled compounds were isolated and identified after incubation of [1-14C]arachidonic acid with guinea pig lung homogenates: 12-hydroxy-5,8,10-heptadecatrienoic acid (HHT), the hemiacetal derivative of 8-(1-hydroxy-3-oxopropyl)-9,12-dihydroxy-5,10-heptadecadienoic acid (PHD), 12-hydroxy-5,8,10,14-eicosatetraenoic acid (HETE), PGE2, PGF, 11-hydroxy-5,8,12,14-eicosatetraenoic acid, and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (in order of decreasing yield). Perfused guinea pig lungs released PHD (654–2304 ng), HHT (192–387 ng), HETE (66–111 ng), PGE2 (15–93 ng), and PGF (93–171 ng) following injection of 30 μg of arachidonic acid. Thus guinea pig lung homogenates as well as intact guinea pig lung converted added arachidonic acid predominantly into PHD and HHT, metabolites of the prostaglandin endoperoxide PGG2, and to a lesser extent into the classical prostaglandins PGE2 and PGF.  相似文献   

2.
3.
《Insect Biochemistry》1987,17(6):863-870
This is the first investigation concerning prostaglandin-like compounds in the primitive insect, Thermobia domestica. The incubation of homogenates of reproductive tissues in the presence of [U-14C]arachidonic acid yielded several compounds which have been characterized by their chromatographic mobilities as well as by the enzyme systems involved in their formation. The three major compounds (I to III) had Rf values very different from those of several prostaglandin standards (PGE2, PGF and 6-keto PGF). As the addition of aspirin or indomethacin had no effect on the conversion of arachidonic acid, a cyclo-oxygenase pathway leading to prostaglandins seems to be excluded. However, another compound (noted V), present in very small quantities, could be a prostaglandin, owing to its chromatographic mobility near that of the PGE2 standard. By contrast, compounds I and II co-migrated with 8- and 5-hydroxyeicosatetraenoic acid standards, respectively, and the addition of 4,7,10,13-eicosatetraynoic acid (ETYA) or nordihydroguaiaretic acid (NDGA) showed a pronounced and dose-dependent inhibition of arachidonic acid conversion. These data demonstrate lipoxygenase activity. Such a pathway in the metabolism of arachidonic acid had not, as yet, been reported in insects. This enzyme system can be demonstrated in the genital tract of the male and also in the seminal receptacle of the female, especially after insemination. So the enzyme system is probably transferred from male to female during mating.  相似文献   

4.
The rates of metabolic degradation and the patterns of metabolite formation of tritium-labeled prostaglandins E2 and F were assessed in vitro in tissues obtained from normal rabbits and from rabbits subjected to hemorrhagic or endotoxic shock. Normal rabbit tissues metabolized prostaglandin E2 at the following rates: renal cortex 479 ± 34, liver 389 ± 95, and lung 881 ± 93 pmol of PGE2 metabolized/mg soluble protein per min at 37°C (mean ± S.E.). Prostaglandin F metabolism proceeded in normal animal tissues at rates of 477 ± 39, 324 ± 95, and 633 ± 69 pmol of PGF metabolized/mg soluble protein per min for renal cortex, liver and lung, respectively. There were no significant differences between these rates of PGE2 and PGF metabolism when compared to rates in tissues obtained from animals subjected to either hemorrhagic or endotoxic shock. In addition, no significant differences were observed between the rate of PGE2 metabolism and that of PGF metabolism for any tissue. However, the lung was able to metabolize PGE2 and PGF significantly more rapidly than the liver, and to degrade PGE2 at a significantly greater rate than the renal cortex. Although slightly different patterns of metabolite production were observed between lung and kidney homogenates, only the liver metabolized prostaglandins almost exclusively to more polar metabolites. While hemorrhagic or endotoxic shock induced slight changes in the patterns of PGE2 metabolite formation in all three tissues studied, PGF metabolite formation patterns were not significantly altered by circulatory shock. Thus, prostaglandin metabolism is not significantly impaired during the first 2 h of hemorrhagic or endotoxic shock in rabbit tissues. Therefore, impairment of prostaglandin metabolism is not the major factor responsible for the early increase in circulating prostaglandin concentrations in these forms of shock.  相似文献   

5.
We have investigated in vitro prostaglandin synthesis by human isolated glomeruli and papillary homogenates and compared the results with those obtained in parallel studies using rat material. Prostaglandins were measured by two methods, namely radiometric high performance liquid chromatography after incubation with 14C arachidonic acid and radioimmunoassay. The relative abundance of various prostaglandins synthesized by glomeruli was different in man (6 keto PGF > TXB2 > PGF > PGE2) and in the rat (PGE2 TXB2 > 6 keto PGF1α). Unidentified peaks eluting between 6 keto PGF and TXB2 were observed only in rat glomeruli. These peaks were suppressed by indomethacin. Direct radioimmunoassay of prostaglandins in the incubation medium of human glomeruli confirmed the predominance of 6 keto PGF synthesis and showed its stimulation by arachidonic acid, its progressive decrease with time and its linear relationship with glomerular protein at low concentrations. On the contrary, the profile of prostaglandin synthesis by the papilla was similar in man and in the rat, PGE2 and PGF being the major products in both species. However, related to one mg of protein, papillary synthesis of these two prostaglandins was greater in the rat. These results show that PGI2 is the major prostaglandin synthesized in human glomeruli and suggest a role for this prostaglandin in glomerular physiology in man.  相似文献   

6.
A new and sensitive method is described for the simultaneous analysis of a mixture containing PGE1, PGE2, PGF, and PGF by electron-capture gas-liquid chromatography. During derivatization of the mixture, PGE1 and PGE2 were converted to PGB1 and PGB2, respectively, yielding a mixture of PGB1, PGB2, PGF, and PGF trimethylsilyl ether pentafluorobenzyl esters. Gas chromatographic resolution of all four derivatives is sufficient for quantitation of each prostaglandin. The A prostaglandins were analyzed by similar conversion to the respective B prostaglandin derivatives. Minimum detection limits for the B and F prostaglandin derivatives were 10 pg and 1 pg, respectively. Samples of rabbit kidney medulla were incubated and analyzed for A, B, E, and F prostaglandins. The results indicate that the method is capable of high recovery and reproducibility.  相似文献   

7.
The pattern of prostaglandins produced from arachidonic acid by two sublines of MDCK canine kidney epithelia cells was different. In one subline designated MDCK1, the most prevalent prostaglandin product was PGE2, whereas the most prevalent product in the subline designated MDCK2 was PGF. This difference was observed when cells previously labeled with [1?14C]arachidonic acid were stimulated with either bradykinin or the calcium ionophore A23187, or when prostaglandins were produced from labeled arachidonic acid added directly to the assay medium. In the latter case, the difference was maintained over a 38-fold range of extracellular arachidoante concentrations. These findings indicate the there is a persistent difference in the distribution of prostaglandins produced by the two commonly used sublines of MDCK cells.  相似文献   

8.
The conversion of arachidonic acid to prostaglandins (PG's) and thromboxane B2 (TXB2) was investigated in homogenates from fetal and adult bovine and rabbit lungs. Adult bovine lungs were very active in converting arachidonic acid (100 μg/g tissue) to both PGE2 (10.7 μg/g tissue) and TXB2 (6.2 μ/g tissue). Smaller amounts of PGF (0.9 μ/g) and 6-oxoPGF were formed. Homogenates from fetal calf lungs during the third trimester of pregnancy were quite active in converting arachidonic acid to PGE2, but formed very little TXB2, PGF or 6-oxoPGF. Homogenates from rabbit lungs converted arachidonic acid (100 μg/g) mainly to PGE2, both before and after birth. The amount of PGE2 formed increased during gestation to a maximum of about 6 μg/g tissue at 28 days of gestation. It then decreased to a minimum (1.5 μg/g) which was observed 8 days after birth, followed by an increase to about 4 μg/g in older rabbits.  相似文献   

9.
Mouse calvaria were maintained in organ culture for 96 h and endogenous prostaglandin production and active bone resorption (45 Ca release) measured. After a lag phase of 12 h, active resorption increased over the 96 h period. The amounts of prostaglandins released into the culture medium (measured by radioimmunoassay) were highest in the first 24 h of culture. Unless these were removed by preculturing for 24 h, or suppressed by indomethacin, no response to exogenous PGE2, PGF or prostaglandin precursors could be demonstrated. Bone resorption was stimulated after preculture by both PGE2 and PGF in a dose-dependent manner (10?18M – 10?5M), with PGE2 being the more potent. Collagen synthesis was unaffected by PGF, whereas PGE2 (10?5M) had an inhibitory effect. Eicosatrienoic acid did not stimulate bone resorption at lower concentrations (10?7M – 10?5M_, but was inhibitory at 10?4M. Arachidonic acid also inhibited resorption at 10?4M, but at lower concentrations (10?7M – 10?5M0 increased active resorption. This was concomitant with a rise in PGE2 and PGF levels, PGE2 production being significantly higher than PGF. The effects of PGE2 (10?8M) and PGF (10M appeared additive: there was no evidence of synergistic or antagonistic effects when varying ratios of PGE2 : PGF2α were employed.  相似文献   

10.
Prostaglandins released from isolated, ventilated and perfused rat lungs were measured by a simple modification of the Vane technique using the rat stomach fundus as a continuous bioassay tissue. Exogeneously supplied arachidonic acid was converted mainly to PGF which was determined by bioassay. A novel method for mixing a stream of inhibitors with the perfusate was used to determine PGF in the presence of substrate amounts of arachidonic acid. Using this system the apparent Km for PGF production with arachidonic acid as the substrate was found to be 1.90 × 10−4M, while the Ki for aspirin was found to be 2.47 × 10−4M. These kinetic parameters are close to those reported for cell free systems and subcellular fractions suggesting that both substrate and inhibitor have ready access to the site of prostaglandin synthesis. The method appears to be generally useful to determine the effect of drugs and environmental factors on the release of prostaglandins by the lung.  相似文献   

11.
VANE et al.1–3 have proposed that aspirin and allied antiinflammatory drugs act by inhibiting the production of prostaglandins in the tissues. Because, however, prostaglandins E1 and E2 (PGE1 and PGE2) had been reported not to elicit pain in human skin at doses inducing inflammation4, 5, Vane did not suggest that the inhibition of prostaglandin production fully explains the analgesic action of aspirin-like drugs. Nonetheless, PGE1 PGE2 or PGF irritates pulmonary6, 7 or ocular8 mucous membrane and, when injected by the subcutaneous or intramuscular route, PGE2 or PGF causes pain9.  相似文献   

12.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2α, 6 keto PGF1α (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2α) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10−8M. PGI2 and 6 keto PGF had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

13.
Cyclooxygenases are responsible for the production of prostaglandin H2 (PGH2) from arachidonic acid. PGH2 can be converted into some bioactive prostaglandins, including prostaglandin F (PGF), a potent chemical messenger used as a biological regulator in the fields of obstetrics and gynecology. The chemical messenger PGF has been industrially produced by chemical synthesis. To develop a biotechnological process, in which PGF can be produced by a microorganism, we transformed an oleaginous fungus, Mortierella alpina 1S-4, rich in triacylglycerol consisting of arachidonic acid using a cyclooxygenase gene from a red alga, Gracilaria vermiculophylla. PGF was accumulated not only in the mycelia of the transformants but also in the extracellular medium. After 12 days of cultivation approximately 860 ng/g and 6421 µg/L of PGF were accumulated in mycelia and the extracellular medium, respectively. The results could facilitate the development of novel fermentative methods for the production of prostanoids using an oleaginous fungus.  相似文献   

14.
The purpose of this study was to determine the concentrations of prostaglandins E2 and F (PGE2 and PGF) in the blood, testis and seminal plasma of mature male rainbow trout and in the ovarian fluid to assess the effects of these prostaglandins on sperm motility parameters when present in activation media. Also prolonged incubation with prostaglandins on sperm motility and calcium influx were studied. The profile of PGE2 and PGF differed in concentration between blood, testicular supernatant and seminal plasma. PGE2 was predominant in the blood sample (0.29 ng ml?1) and testicular supernatant (3.1 ng ml?1) whereas their level in seminal plasma was lower than PGF (0.23 ng ml?1). The concentrations of PGF in blood, testis and seminal plasma were 0.04, 0.99, 1.3 ng ml?1, respectively. In the ovarian fluid the concentrations of both prostaglandins were higher than in the male reproductive tract. Adding both prostaglandins to activation buffer (at concentrations 15 and 70 ng ml?1) had no effect on any CASA parameters. Calcium influx related to rainbow trout sperm incubations with PGE2, and PGF was not detected. After 24 h incubation of sperm in artificial seminal plasma solution without and with prostaglandins all sperm samples increased their motility potential and intracellular calcium concentration. Therefore, this effect was not related to the presence of prostaglandins. In summary PGE2, and PGF were present in the rainbow trout male reproductive tract, and their profile varies from that of blood, testis and seminal plasma. The specific role of both prostaglandins in salmonid sperm biology remains unclear.  相似文献   

15.
Prostaglandin biosynthesis and metabolism were studied in the VX2 carcinoma-bearing rabbit, an animal model of prostaglandin-mediated hypercalcemia. All the identification and quantification of the prostaglandins were done by gas chromatography-mass spectrometry. The tumor incubated in vitro converted exogeneous arachidonic acid principally to PGE2. Biosynthesis from endogenous precursor lipids yields mainly PGE2 and PGF2α. The 100,000 × g supernatant fluid of the tumor did not contain any metabolizing enzymes.Significant hypercalcemia developed between the first and second week after tumor implantation. The levels of the major plasma metabolite of PGE2, 15-keto-13,14-dihydro-PGE2, became elevated at one week, had risen 25-fold by the end of the second week, and at the fourth week were elevated to 256 times the pre-incubation levels. The concentration of 15-keto-13,14-dihydro-PGF2α in plasma rose in parallel but to a lesser degree. 7α-hydroxy-5,11-diketotetranor-prostane-1,16-dioic acid, the major urinary metabolite of the E prostaglandins, was elevated two weeks after tumor implantation and rose until the fifth week. Indomethacin treatment lowered both serum calcium and the plasma level of 15-keto-13,14-dihydro-PGE2.  相似文献   

16.
We have recently shown that mitochondrial and plasma-membrane fractions from kidney medulla possess Ca2+-stimulated acylhydrolase and prostaglandin synthase activities. The nature of the enzymic coupling between the Ca2+-stimulated arachidonic acid release and its subsequent conversion into prostaglandins was investigated in subcellular fractions from rabbit kidney medulla. Plasma-membrane, mitochondrial and microsomal fractions were found to have similar apparent Km values for conversion of added exogenous arachidonate into prostaglandins. The rate of prostaglandin biosynthesis (Vmax.) from added arachidonic acid in the microsomal fraction was approx. 2-fold higher than in the other subcellular fractions. In contrast, prostaglandin E2 synthesis from endogenous arachidonate in plasma-membrane and mitochondrial fractions was 3–4-fold higher than in microsomes. Furthermore, Ca2+ stimulated endogenous arachidonate deacylation and prostaglandin E2 generation in the former two fractions but not in microsomes. In mitochondrial or crude plasma-membrane fractions, in which prostaglandin biosynthesis was inhibited with aspirin, arachidonate released from these fractions was converted into prostaglandins by the microsomal prostaglandin synthase. Thus an intracellular prostaglandin generation process that involves inter-fraction transfer of arachidonic acid can operate. Prostaglandin generation by such an inter-fraction process is, however, less efficient than by an intra-fraction process, where arachidonic acid released by mitochondria or crude plasma membranes is converted into prostaglandins by prostaglandin synthase present in the same fraction. This demonstrates the presence of a tight intra-fraction enzymic coupling between Ca2+-stimulated acylhydrolase and prostaglandin synthase enzyme systems in both mitochondrial and plasma-membrane fractions.  相似文献   

17.
In vitro prostaglandin biosynthesis by uteri of ovariectomized rats and guinea pigs treated or untreated with oestradiol 17 β, administered subsutaneously, was measured by R.I.A. of PGF and PGE2. Incubations with [1-14C] arachidonic acid were also performed and labelled metabolites were analyzed by TLC. The main metabolite in rats was 6 keto PGF and in decreasing order of magniture, PGF and PGE2. In guinea pig PGF2ga was the main product. Ovariectomy in rats completely changed the pattern of synthesized prostanoids: PGI2 production was doubled when compared to cycling rats and PGE2 increased 10 fold. PGF walues were similar to the mean value measured during the cycle. OE2 treatment almost completely inhibited PGI2 synthesis and reduced PGE2 by half. Total PG synthesis in OE2 treated animals was decreased by 5 fold when compared to spayed rats. Endogenous PGF synthesis was slightly stimulated. In the guinea pig OE2 treatment of ovariectomized animals increased the total synthesis from 50 per cent. PGF was always the main metabolite. In conclusion OE2 regulation of uterine PG synthesis is depending on the animal species and cannot be explained by a unique effect on the cyclooxyhenase, but rather by an interplay on the various enzymes of the arachidonic acid cascade.  相似文献   

18.
Although prostaglandins appear to play an important role in numerous physiological processes in the adult, neonate, and fetus, very little is known about the role of these compounds in the embryo. This study demonstrates that rat embryo homogenates synthesized 6-oxo-PGF; PGE and PGF in markedly different amounts from endogenous substrate. Synthesis was inhibited by indomethacin (10 μM) in varying degrees (70–89%) depending on the prostaglandin. The metabolite of PGF, 13,14-dihydro-15-keto PGF (PGF-M), was produced in limited amounts in the absence of exogenous NAD. In the presence of exogenous NAD and PGF however, embryonic homogenates produced PGF-M. The potential role of prostaglandins during embryogenesis is discussed.  相似文献   

19.
The levels of PGD2, PGE2, PGF and 6-keto-PGF (6KF) produced from endogenous archidonic acid (AA) were quantitated in cat cerebral cortical homogenates and microvessels isolated from cat cerebral cortex using gas chromatography/mass spectrometry (GC/MS). There was a six-fold enrichment of 6KF levels in isolated microvessels, compared to homogenates, suggesting that 6KF is of vascular, rather than neuronal origin. In order to further understand any possible role that norepinephrine (NE)_might have on modulation of PG synthesis, we studied the effects of 0.5 mM NE on PG synthesis from endogenous AA and from 3H-PGG2, the endoperoxide precursor of PGs. In cat cortical homogenates NE induced a 74% increase in PGD2 and PGF, a 62% increase in PGE2, and a 36% increase in 6KF, as measured by GC/MS. NE caused a twofold increase in the conversion of 3H-PGG2 to 3h-PGG, with a concomitant decrease in 3H-PGE2 and 3H-6KF formation, and no change in 3H-PGD2 synthesis. NE had no effect on the total conversiob of 3H-PGG2 to 3H-PGs, nor on the breakdown of 3H-PGG2 in the absence of brain tissue. We conclude that NE stimulates extravascular synthesis of PGD2, PGE2 and PGF by stimulation of the prostaglandin synthetase complex, in addition to NE's stimulatory effect on the conversion of PGG2 to PGF, and that the lack of effect of NE on 6KF synthesis reflects either a failure to achieve an adequate concentration at the vascular tissue, or an absence of the mechanism whereby NE stimulates PG synthetase.  相似文献   

20.
PGI2 and 6-keto-PGF were converted to 6-methoxime-PGF (6-MeON-PGF) by treatment with methoxyamine HCl in acetate buffer. The formed 6-MeON-PGF was measured by radioimmunoassay. Antisera were raised in rabbits after immunization against 6-MeON-PGF-BSA conjugate. Diluted 1:20.000 to bind 50% of the tracer (3H-6-MeON-PGF, 100 Ci/mmol), the antiserum cross reacted 0.8% with PGE2, 1% with PGF and less than 0.2% with PGD2, PGF, PGF and TXB2. The radioimmunoassay was used to estimate release of PGI2 and 6-keto-PGF from chopped rabbit renal medulla and cortex incubated in Krebs-Ringer bicarbonate buffer (37°C, 30 min). The 6-keto-PGf radioimmunoassay was validated in biological samples by mass fragmentography. The chopped medulla (n=5) released 38±9 ng/g/min and the cortex (n=5) 4.7±2.0 ng/g/min, while the release of immunoreactive PGE2 (iPGE2) and iPGF was 171±26 and 74±13 ng/g/min from the medulla and 4.3±1.3 and 2.7±0.3 ng/g/min from the cortex, respectively. The results confirm previous findings, which indicate that in the renal medulla prostaglandin endoperoxides are mainly transformed to prostaglandins, while in the cortex transformation to PGI2 seems to be of greater relative importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号