首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泛素化是真核生物特有的蛋白质翻译后修饰,广泛地参与宿主细胞各种信号通路和生理过程.病原菌常通过分泌毒性效应蛋白,对泛素和泛素结合酶进行独特的共价修饰,或者利用泛素连接酶和去泛素化酶的酶学活性,调节宿主泛素化过程,从而干扰宿主细胞的信号转导,促进细菌的感染和生存.本文概述了病原菌效应蛋白调节宿主泛素化途径的主要研究进展和最新发现.  相似文献   

2.
Ubiquitin is relatively modest in size but involves almost entire cellular signaling pathways. The primary role of ubiquitin is maintaining cellular protein homeostasis. Ubiquitination regulates the fate of target proteins using the proteasome- or autophagy-mediated degradation of ubiquitinated substrates, which can be either intracellular or foreign proteins from invading pathogens. Legionella, a gram-negative intracellular pathogen, hinders the host-ubiquitin system by translocating hundreds of effector proteins into the host cell’s cytoplasm. In this review, we describe the current understanding of ubiquitin machinery from Legionella. We summarize structural and biochemical differences between the host-ubiquitin system and ubiquitin-related effectors of Legionella. Some of these effectors act much like canonical host-ubiquitin machinery, whereas others have distinctive structures and accomplish non-canonical ubiquitination via novel biochemical mechanisms.  相似文献   

3.
Bacterial pathogens have developed a wide range of strategies to survive within human cells. A number of pathogens multiply in a vacuolar compartment, whereas others can rupture the vacuole and replicate in the host cytosol. A common theme among many bacterial pathogens is the use of specialised secretion systems to deliver effector proteins into the host cell. These effectors can manipulate the host's membrane trafficking pathways to remodel the vacuole into a replication‐permissive niche and prevent degradation. As master regulators of eukaryotic membrane traffic, Rab GTPases are principal targets of bacterial effectors. This review highlights the manipulation of Rab GTPases that regulate host recycling endocytosis by several bacterial pathogens, including Chlamydia pneumoniae, Chlamydia trachomatis, Shigella flexneri, Salmonella enterica serovar Typhimurium, Uropathogenic Escherichia coli, and Legionella pneumophila. Recycling endocytosis plays key roles in a variety of cellular aspects such as nutrient uptake, immunity, cell division, migration, and adhesion. Though much remains to be understood about the molecular basis and the biological relevance of bacterial pathogens exploiting Rab GTPases, current knowledge supports the notion that endocytic recycling Rab GTPases are differentially targeted to avoid degradation and support bacterial replication. Thus, future studies of the interactions between bacterial pathogens and host endocytic recycling pathways are poised to deepen our understanding of bacterial survival strategies.  相似文献   

4.
The ubiquitin proteasome system and autophagy constitute key signalling pathways in the host response to infection. The identification of adaptors linking the two pathways has prompted a re-examination of the latter's involvement in inflammatory reactions and the clearance of bacteria. The ubiquitin-autophagy pathway is a preferred target for effectors from pathogens that seek to exploit and evade the host defence mechanisms. A number of new players and signalling nodes have recently been identified. Here, we discuss these new insights into the host's control of bacterial infection.  相似文献   

5.
Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post‐translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin‐modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host–pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.  相似文献   

6.
Ubiquitination is a post‐translational modification in which ubiquitin, a 76‐amino acid polypeptide, is covalently bound to one or more lysines of a target protein. Ubiquitination is mediated by the coordinated activity of ubiquitin activating (E1), conjugating (E2), and ligating (E3) enzymes. Ubiquitin is widely investigated for its ability to regulate key biological processes in the cell, including protein degradation and host–bacteria interactions. The determinants underlying bacterial ubiquitination, and their precise roles in host defense, have not been fully resolved. In this issue of EMBO Reports, Polajnar et al 1 discover that Ring‐between‐Ring (RBR) E3 ligase ARIH1 (also known as HHARI) is involved in formation of the ubiquitin coat surrounding cytosolic Salmonella. Evidence suggests that ARIH1, in cooperation with E3 ligases LRSAM1 and HOIP, modulates the recognition of intracellular bacteria for cell‐autonomous immunity.  相似文献   

7.
Enteric pathogen–host interactions occur at multiple interfaces, including the intestinal epithelium and deeper organs of the immune system. Microbial ligands and activities are detected by host sensors that elicit a range of immune responses. Membrane‐bound toll‐like receptors and cytosolic inflammasome pathways are key signal transducers that trigger the production of pro‐inflammatory molecules, such as cytokines and chemokines, and regulate cell death in response to infection. In recent years, the inflammasomes have emerged as a key frontier in the tussle between bacterial pathogens and the host. Inflammasomes are complexes that activate caspase‐1 and are regulated by related caspases, such as caspase‐11, ‐4, ‐5 and ‐8. Importantly, enteric bacterial pathogens can actively engage or evade inflammasome signalling systems. Extracellular, vacuolar and cytosolic bacteria have developed divergent strategies to subvert inflammasomes. While some pathogens take advantage of inflammasome activation (e.g. Listeria monocytogenes, Helicobacter pylori), others (e.g. E. coli, Salmonella, Shigella, Yersinia sp.) deploy a range of virulence factors, mainly type 3 secretion system effectors, that subvert or inhibit inflammasomes. In this review we focus on inflammasome pathways and their immune functions, and discuss how enteric bacterial pathogens interact with them. These studies have not only shed light on inflammasome‐mediated immunity, but also the exciting area of mammalian cytosolic immune surveillance.  相似文献   

8.
Enteric bacterial pathogens commonly use a type III secretion system (T3SS) to successfully infect intestinal epithelial cells and survive and proliferate in the host. Enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC; EHEC) colonize the human intestinal mucosa, form characteristic histological lesions on the infected epithelium and require the T3SS for full virulence. T3SS effectors injected into host cells subvert cellular pathways to execute a variety of functions within infected host cells. The EPEC and EHEC effectors that subvert innate immune pathways – specifically those involved in phagocytosis, host cell survival, apoptotic cell death and inflammatory signalling – are all required to cause disease. These processes are reviewed within, with a focus on recent work that has provided insights into the functions and host cell targets of these effectors.  相似文献   

9.
10.
Microbial pathogens and pests of animals and plants secrete effector proteins into host cells, altering cellular physiology to the benefit of the invading parasite. Research in the past decade has delivered significant new insights into the molecular mechanisms of how these effector proteins function, with a particular focus on modulation of host immunity‐related pathways. One host system that has emerged as a common target of effectors is the ubiquitination system in which substrate proteins are post‐translationally modified by covalent conjugation with the small protein ubiquitin. This modification, typically via isopeptide bond formation through a lysine side chain of ubiquitin, can result in target degradation, relocalization, altered activity or affect protein–protein interactions. In this review, I focus primarily on how effector proteins from bacterial and filamentous pathogens of plants and pests perturb host ubiquitination pathways that ultimately include the 26S proteasome. The activities of these effectors, in how they affect ubiquitin pathways in plants, reveal how pathogens have evolved to identify and exploit weaknesses in this system that deliver increased pathogen fitness.  相似文献   

11.
Given the critical roles of inflammation and programmed cell death in fighting infection, it is not surprising that many bacterial pathogens have evolved strategies to inactivate these defences. The causative agent of infant diarrhoea, enteropathogenic Escherichia coli (EPEC), is an extracellular, intestinal pathogen that blocks both inflammation and programmed cell death. EPEC attaches to enterocytes, remains in the gut lumen and utilizes a type III secretion system (T3SS) to inject multiple virulence effector proteins directly into the infected cell, many of which subvert host antimicrobial processes through the disruption of signalling pathways. Recently, T3SS effector proteins from EPEC have been identified that inhibit death receptor‐induced apoptosis. Here we review the mechanisms used by EPEC T3SS effectors to manipulate apoptosis and promote host cell survival and discuss the role of these activities during infection.  相似文献   

12.
The genus Shigella infects human gut epithelial cells to cause diarrhea and gastrointestinal disorders. Like many other Gram-negative bacterial pathogens, the virulence of Shigella spp. relies on a conserved type three secretion system that delivers a handful of effector proteins into host cells to manipulate various host cell physiology. However, many of the Shigella type III effectors remain functionally uncharacterized. Here we observe that OspG, one of the Shigella effectors, interacted with ubiquitin conjugates and poly-ubiquitin chains of either K48 or K63 linkage in eukaryotic host cells. Purified OspG protein formed a stable complex with ubiquitin but showed no interactions with other ubiquitin-like proteins. OspG binding to ubiquitin required the carboxyl terminal helical region in OspG and the canonical I44-centered hydrophobic surface in ubiquitin. OspG and OspG-homologous effectors, NleH1/2 from enteropathogenic E coli (EPEC), contain sub-domains I-VII of eukaryotic serine/threonine kinase. GST-tagged OspG and NleH1/2 could undergo autophosphorylation, the former of which was significantly stimulated by ubiquitin binding. Ubiquitin binding was also required for OspG functioning in attenuating host NF-κB signaling. Our data illustrate a new mechanism that bacterial pathogen like Shigella exploits ubiquitin binding to activate its secreted virulence effector for its functioning in host eukaryotic cells.  相似文献   

13.
Identification of cellular processes modulated by microbial organisms that undermine and disarm mammalian host defences against bacterial invaders has been the focus of significant biomedical research. In this microreview we will illustrate the role of bacterial N‐acyl homoserine lactones (AHL) as a strategy utilized by Gram‐negative bacterial pathogens to enable colonization of the host through AHL‐mediated inhibition of inflammation induced via innate immune receptor mechanisms. We will also highlight some of the signalling pathways in which the study of AHL‐mediated effects on mammalian cells might lead to the discovery of global underlying principles linking inflammation and immunity to many chronic human diseases, including cancer and obesity.  相似文献   

14.
Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post‐translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.   相似文献   

15.
Bacterial pathogens often harbour a type III secretion system (TTSS) that injects effector proteins into eukaryotic cells to manipulate host processes and cause diseases. Identification of host targets of bacterial effectors and revealing their mechanism of actions are crucial for understating bacterial virulence. We show that EspH, a type III effector conserved in enteric bacterial pathogens including enteropathogenic Escherichia coli (EPEC), enterohaemorrhagic E. coli and Citrobacter rodentium, markedly disrupts actin cytoskeleton structure and induces cell rounding up when ectopically expressed or delivered into HeLa cells by the bacterial TTSS. EspH inactivates host Rho GTPase signalling pathway at the level of RhoGEF. EspH directly binds the DH‐PH domain in multiple RhoGEFs, which prevents their binding to Rho and thereby inhibits nucleotide exchange‐mediated Rho activation. Consistently, infection of mouse macrophages with EPEC harbouring EspH attenuates phagocytosis of the bacteria as well as FcγR‐mediated phagocytosis. EspH represents the first example of targeting RhoGEFs by bacterial effectors, and our results also reveal an unprecedented mechanism used by enteric pathogens to counteract the host defence system.  相似文献   

16.
The gram-negative type III secretion pathway translocates bacterial proteins directly into eukaryotic host cells, thus allowing a pathogen to interfere directly with host signalling pathways. Protein and inositol phosphatases and protein kinases have been identified as delivered effectors in three bacterial pathogens, Salmonella, Shigella and Yersinia, and it is expected that several more such type III effectors will be found.  相似文献   

17.
18.
The modulation of the chromatin organization of eukaryotic cells plays an important role in regulating key cellular processes including host defence mechanisms against pathogens. Thus, to successfully survive in a host cell, a sophisticated bacterial strategy is the subversion of nuclear processes of the eukaryotic cell. Indeed, the number of bacterial proteins that target host chromatin to remodel the host epigenetic machinery is expanding. Some of the identified bacterial effectors that target the chromatin machinery are ‘eukaryotic‐like’ proteins as they mimic eukaryotic histone writers in carrying the same enzymatic activities. The best‐studied examples are the SET domain proteins that methylate histones to change the chromatin landscape. In this review, we will discuss SET domain proteins identified in the Legionella, Chlamydia and Bacillus genomes that encode enzymatic activities targeting host histones. Moreover, we discuss their possible origin as having evolved from prokaryotic ancestors or having been acquired from their eukaryotic hosts during their co‐evolution. The characterization of such bacterial effectors as modifiers of the host chromatin landscape is an exciting field of research as it elucidates new bacterial strategies to not only manipulate host functions through histone modifications but it may also identify new modifications of the mammalian host cells not known before.  相似文献   

19.
王佐强  姚玉峰 《微生物学报》2018,58(7):1158-1166
沙门菌(Salmonella spp.)作为胞内病原菌,通过侵入宿主细胞,导致人类和多种动物感染疾病。在与宿主细胞的长期斗争中,沙门菌进化出多种机制来逃避宿主的监视与防御,从而完成侵入并生存增殖的过程。尽管一些效应蛋白靶向的宿主因子已经被发现,但大多数效应蛋白的靶点尚且未知。本文综述了沙门菌效应蛋白对宿主细胞生理活动的影响,包括对细胞骨架的变化、炎症应答、胞膜修饰和滤泡的胞内移动现象及其分子机制进行阐述。  相似文献   

20.
Bacterial pathogens can induce an inflammatory response from epithelial tissues due to secretion of the pro‐inflammatory chemokine interleukin‐8 (IL‐8). Many bacterial pathogens manipulate components of the focal complex (FC) to induce signalling events in host cells. We examined the interaction of several bacterial pathogens with host cells, including Campylobacter jejuni, to determine if the FC is required for induction of chemokine signalling in response to bacterial pathogens. Our data indicate that secretion of IL‐8 is triggered by C. jejuni, Helicobacter pylori and Salmonella enterica serovar Typhimurium in response to engagement of β1 integrins. Additionally, we found that the secretion of IL‐8 from C. jejuni infected epithelial cells requires FAK, Src and paxillin, which in turn are necessary for Erk 1/2 recruitment and activation. Targeting the FC component paxillin with siRNA prevented IL‐8 secretion from cells infected with several bacterial pathogens, including C. jejuni, Helicobacter pylori, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa, and Vibrio parahaemolyticus. Our findings indicate that maximal IL‐8 secretion from epithelial cells in response to bacterial infection is dependent on the FC. Based on the commonality of the host response to bacterial pathogens, we propose that the FC is a signalling platform for an epithelial cell response to pathogenic organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号