首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Earlier studies have shown that the C-terminal half of helix 6 (H6) of the influenza A virus matrix protein (M1) containing the YRKL sequence is involved in virus budding (E. K.-W. Hui, S. Barman, T. Y. Yang, and D. P. Nayak, J. Virol. 77:7078-7092, 2003). In this report, we show that the YRKL sequence is the L domain motif of influenza virus. Like other L domains, YRKL can be inserted at different locations on the mutant M1 protein and can restore virus budding in a position-independent manner. Although YRKL is a part of the nuclear localization signal (NLS), the function of YRKL was independent of the NLS activity and the NLS function of M1 was not required for influenza virus replication. Some mutations in YRKL and the adjacent region caused a reduction in the virus titer by blocking virus release, and some affected virus morphology, producing elongated particles. Coimmunoprecipitation and Western blotting analyses showed that VPS28, a component of the ESCRT-I complex, and Cdc42, a member of the Rho family GTP-binding proteins, interacted with the M1 protein via the YRKL motif. In addition, depletion of VPS28 and Cdc42 by small interfering RNA resulted in reduction of influenza virus production. Moreover, overexpression of dominant-negative Cdc42 inhibited influenza virus replication, whereas a constitutively active Cdc42 mutant enhanced virus production in infected cells. These results indicated that VPS28, a component of ESCRT-I, and Cdc42, a small G protein, are associated with the M1 protein and involved in the influenza virus life cycle.  相似文献   

2.
The mechanism of budding of influenza A virus revealed important deviation from the consensus mechanism of budding of retroviruses and of a growing number of negative-strand RNA viruses. This study is focused on the role of the influenza A virus matrix protein M1 in virus release. We found that a mutation of the proline residue at position 16 of the matrix protein induces inhibition of virus detachment from cells. Depletion of the M1-binding protein RACK1 also impairs virus release and RACK1 binding requires the proline residue at position 16 of M1. The impaired M1-RACK1 interaction does not affect the plasma membrane binding of M1; in contrast, RACK1 is recruited to detergent-resistant membranes in a M1-proline-16-dependent manner. The proline-16 mutation in M1 and depletion of RACK1 impairs the pinching-off of the budding virus particles. These findings reveal the active role of the viral matrix protein in the release of influenza A virus particles that involves a cross-talk with a RACK1-mediated pathway.  相似文献   

3.
Influenza A virus matrix protein (M1) plays an important role in virus assembly and budding. Besides a well-characterized basic amino acid-rich nuclear localization signal region at positions 101 to 105, M1 contains another basic amino acid stretch at positions 76-78 that is highly conserved among influenza A and B viruses, suggesting the importance of this stretch. To understand the role of these residues in virus replication, we mutated them to either lysine (K), alanine (A), or aspartic acid (D). We could generate viruses possessing either single or combination substitutions with K or single substitution with A at any of these positions, but not those with double substitutions with A or a single substitution with D. Viruses with the single substitution with A exhibited slower growth and had lower nucleoprotein/M1 quantitative ratio in virions compared to the wild-type virus. In cells infected with a virus possessing the single substitution with A at position 77 or 78 (R77A or R78A, respectively), the mutated M1 localized in patches at the cell periphery where nucleoprotein and hemagglutinin colocalized more often than the wild-type did. Transmission electron microscopy showed that virus possessing M1 R77A or R78A, but not the wild-type virus, was present in vesicular structures, indicating a defect in virus assembly and/or budding. The M1 mutations that did not support virus generation exhibited an aberrant M1 intracellular localization and affected protein incorporation into virus-like particles. These results indicate that the basic amino acid stretch of M1 plays a critical role in influenza virus replication.  相似文献   

4.
The density of glycoprotein (GP) distribution on the virion surface substantially influences the virus infectivity and pathogenicity. A method to quantitatively determine the area occupied by surface GP spikes was proposed for influenza virus (Flu) strain A/PR/8/34 on the basis of data of tritium bombardment and dynamic light scattering. The latter was used to measure the diameter of intact virions and subviral particles (Flu virions lacking GP spikes after bromelain digestion). Intact virions and subviral particles were bombarded with a hot tritium atom flux, and the specific radioactivity of the matrix M1 protein was analyzed. The tritium label was incorporated into the amino acid residues of a thin exposed protein layer and partly penetrated through the lipid bilayer of the viral envelope, labeling M1, located under the lipid bilayer. The tritium label distribution among different amino acid residues was the same in M1 isolated from subviral particles and M1 isolated from intact virions, demonstrating that the M1 spatial structure remained unchanged during proteolysis of GP spikes. The difference in specific radioactivity between the M1 proteins isolated from intact virions and subviral particles was used to calculate the GP-free portion of the viral surface. Approximating the Flu virion as a sphere, the GP-covered area was estimated at 1.4 × 104 nm2, about 40% of the total virion surface. This was consistent with the cryoelectron tomography data published for Flu strain A/X-31. The approach can be applied for other enveloped high pathogenic viruses, such as HIV and the Ebola virus.  相似文献   

5.
Various 2alpha-helix peptides were designed and synthesized based on the RNA-binding region of matrix protein M1 in influenza virus. The binding properties of the peptides to model ssRNA, ssDNA, dsDNA, and virus RNA were examined by the fluorescence studies of a dansyl group incorporated into the peptides. The peptide containing the hydrophilic residues of M1 RNA-binding region bound RNAs selectively.  相似文献   

6.
Chen BJ  Takeda M  Lamb RA 《Journal of virology》2005,79(21):13673-13684
The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.  相似文献   

7.
The ectodomain of influenza A matrix protein 2 (M2e) is a candidate for a universal influenza A vaccine. We used recombinant Hepatitis B core antigen to produce virus-like particles presenting M2e (M2e-VLPs). We produced the VLPs with and without entrapped nucleic acids and compared their immunogenicity and protective efficacy. Immunization of BALB/c mice with M2e-VLPs containing nucleic acids induced a stronger, Th1-biased antibody response compared to particles lacking nucleic acids. The former also induced a stronger M2e-specific CD4+ T cell response, as determined by ELISPOT. Mice vaccinated with alum-adjuvanted M2e-VLPs containing the nucleic acid-binding domain were better protected against influenza A virus challenge than mice vaccinated with similar particles lacking this domain, as deduced from the loss in body weight following challenge with X47 (H3N2) or PR/8 virus. Challenge of mice that had been immunized with M2e-VLPs with or without nucleic acids displayed significantly lower mortality, morbidity and lung virus titers than control-immunized groups. We conclude that nucleic acids present in M2e-VLPs correlate with improved immune protection.  相似文献   

8.
A novel strain of influenza A H1N1 emerged in the spring of 2009 and has spread rapidly throughout the world. Although vaccines have recently been developed that are expected to be protective, their availability was delayed until well into the influenza season. Although anti‐influenza drugs such as neuraminidase inhibitors can be effective, resistance to these drugs has already been reported. Although human saliva was known to inhibit viral infection and may thus prevent viral transmission, the components responsible for this activity on influenza virus, in particular, influenza A swine origin influenza A virus (S‐OIV), have not yet been defined. By using a proteomic approach in conjunction with beads that bind α‐2,6‐sialylated glycoprotein, we determined that an α‐2‐macroglobulin (A2M) and an A2M‐like protein are essential components in salivary innate immunity against hemagglutination mediated by a clinical isolate of S‐OIV (San Diego/01/09 S‐OIV). A model of an A2M‐based “double‐edged sword” on competition of α‐2,6‐sialylated glycoprotein receptors and inactivation of host proteases is proposed. We emphasize that endogenous A2M in human innate immunity functions as a natural inhibitor against S‐OIV.  相似文献   

9.
New influenza vaccines have been designed based on the fact that the extracellular domain of M2 protein (M2e) is nearly invariant in all influenza A strains. To clarify which exact region of M2e could induce antibodies with inhibitory activities against influenza virus replication, four overlapping peptides covering M2e were synthesized and then coupled to the carrier protein bovine serum albumin through the cysteine of the peptides. After a vaccination course, all these four peptide vaccines could induce high levels of rabbit antibodies with predefined peptide specificity (antibody dilution: 1:6400-1:25600). Besides, the anti-N-terminal antibodies (AS2) reacted strongly with M2e, and reacted weakly with the middle part and C-terminus of M2e. The MDCK assay for cytopathic effect proved that antibodies recognizing the N-terminus of M2e could obviously inhibit replication of influenza A virus (A/wuhan/359/95) and influenza B virus (B/wuhan/321/99) in vitro in a dose-dependent manner, while antibodies recognizing the middle part and the C-terminus of M2e did not show such significant inhibitory activities. Sequence analysis indicates that the first nine N-terminal amino acid residues of M2e are extremely conservative. Just this region containing the first nine amino acid residues could induce antibodies with inhibitory activity against influenza A and influenza B virus replication, suggesting that the N-terminus of M2e may contain an epitope that could induce inhibitory antibodies against influenza virus replication in vitro.  相似文献   

10.
The influenza A(H1N1)pdm09 virus caused the first influenza pandemic of the 21st century. In this study, we wanted to decipher the role of conserved basic residues of the viral M1 matrix protein in virus assembly and release. M1 plays many roles in the influenza virus replication cycle. Specifically, it participates in viral particle assembly, can associate with the viral ribonucleoprotein complexes and can bind to the cell plasma membrane and/or the cytoplasmic tail of viral transmembrane proteins. M1 contains an N-terminal domain of 164 amino acids with two basic domains: the nuclear localization signal on helix 6 and an arginine triplet (R76/77/78) on helix 5. To investigate the role of these two M1 basic domains in influenza A(H1N1)pdm09 virus molecular assembly, we analyzed M1 attachment to membranes, virus-like particle (VLP) production and virus infectivity. In vitro, M1 binding to large unilamellar vesicles (LUVs), which contain negatively charged lipids, decreased significantly when the M1 R76/77/78 motif was mutated. In cells, M1 alone was mainly observed in the nucleus (47%) and in the cytosol (42%). Conversely, when co-expressed with the viral proteins NS1/NEP and M2, M1 was relocated to the cell membranes (55%), as shown by subcellular fractionation experiments. This minimal system allowed the production of M1 containing-VLPs. However, M1 with mutations in the arginine triplet accumulated in intracellular clusters and its incorporation in VLPs was strongly diminished. M2 over-expression was essential for M1 membrane localization and VLP production, whereas the viral trans-membrane proteins HA and NA seemed dispensable. These results suggest that the M1 arginine triplet participates in M1 interaction with membranes. This R76/77/78 motif is essential for M1 incorporation in virus particles and the importance of this motif was confirmed by reverse genetic demonstrating that its mutation is lethal for the virus. These results highlight the molecular mechanism of M1-membrane interaction during the formation of influenza A(H1N1)pdm09 virus particles which is essential for infectivity.  相似文献   

11.
【目的】本研究旨在通过焦磷酸测序技术对我国分离的H1N1、H3N2、H9N2等3种基因型的10株猪流感病毒分离株进行金刚烷胺耐药性鉴定。【方法】流感病毒M2蛋白5个关键位点氨基酸残基(第26、27、30、31和34位)中的任何一个发生突变会导致抗流感病毒药物中金刚烷胺抗药性的产生。本研究利用焦磷酸测序技术对2004-2008年国内分离的10株猪流感病毒M基因金刚烷胺耐药性分子决定区进行了鉴定,并进行抗药性分析。【结果】基于M2蛋白基因保守区序列建立的焦磷酸测序技术能用于国内猪流感病毒的快速检测,且具有较好的特异性和重复性。抗药性分析表明10株猪流感病毒国内分离株中5株H1N1分离株全部耐药,主要存在M2蛋白的V27T、V27I或S31N位点的突变,而4株H3N2和1株H9N2猪流感病毒分离株在M2蛋白5个关键位点上均未出现变异,表明其对金刚烷胺敏感。【结论】基于M基因的焦磷酸测序技术可以用于我国猪流感病毒金刚烷胺耐药性快速鉴定。  相似文献   

12.
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in CTL epitopes. Also for influenza A viruses a number of amino acid substitutions in the nucleoprotein (NP) have been associated with escape from CTL. However, other previously identified influenza A virus CTL epitopes are highly conserved, including the immunodominant HLA-A*0201-restricted epitope from the matrix protein, M1(58-66). We hypothesized that functional constraints were responsible for the conserved nature of influenza A virus CTL epitopes, limiting escape from CTL. To assess the impact of amino acid substitutions in conserved epitopes on viral fitness and recognition by specific CTL, we performed a mutational analysis of CTL epitopes. Both alanine replacements and more conservative substitutions were introduced at various positions of different influenza A virus CTL epitopes. Alanine replacements for each of the nine amino acids of the M1(58-66) epitope were tolerated to various extents, except for the anchor residue at the second position. Substitution of anchor residues in other influenza A virus CTL epitopes also affected viral fitness. Viable mutant viruses were used in CTL recognition experiments. The results are discussed in the light of the possibility of influenza viruses to escape from specific CTL. It was speculated that functional constraints limit variation in certain epitopes, especially at anchor residues, explaining the conserved nature of these epitopes.  相似文献   

13.
Hemagglutinin is the major surface glycoprotein of influenza viruses. It participates in the initial steps of viral infection through receptor binding and membrane fusion events. The influenza pandemic of 2009 provided a unique scenario to study virus evolution. We performed molecular dynamics simulations with four hemagglutinin variants that appeared throughout the 2009 influenza A (H1N1) pandemic. We found that variant 1 (S143G, S185T) likely arose to avoid immune recognition. Variant 2 (A134T), and variant 3 (D222E, P297S) had an increased binding affinity for the receptor. Finally, variant 4 (E374K) altered hemagglutinin stability in the vicinity of the fusion peptide. Variants 1 and 4 have become increasingly predominant, while variants 2 and 3 declined as the pandemic progressed. Our results show some of the different strategies that the influenza virus uses to adapt to the human host and provide an example of how selective pressure drives antigenic drift in viral proteins.  相似文献   

14.
The only spike of influenza C virus, the hemagglutinin‐esterase‐fusion glycoprotein (HEF) combines receptor binding, receptor hydrolysis and membrane fusion activities. Like other hemagglutinating glycoproteins of influenza viruses HEF is S‐acylated, but only with stearic acid at a single cysteine located at the cytosol‐facing end of the transmembrane region. Previous studies established the essential role of S‐acylation of hemagglutinin for replication of influenza A and B virus by affecting budding and/or membrane fusion, but the function of acylation of HEF was hitherto not investigated. Using reverse genetics we rescued a virus containing non‐stearoylated HEF, which was stable during serial passage and showed no competitive fitness defect, but the growth rate of the mutant virus was reduced by one log. Deacylation of HEF does neither affect the kinetics of its plasma membrane transport nor the protein composition of virus particles. Cryo‐electron microscopy showed that the shape of viral particles and the hexagonal array of spikes typical for influenza C virus were not influenced by this mutation indicating that virus budding was not disturbed. However, the extent and kinetics of haemolysis were reduced in mutant virus at 37°C, but not at 33°C, the optimal temperature for virus growth, suggesting that non‐acylated HEF has a defect in membrane fusion under suboptimal conditions.  相似文献   

15.
Influenza A virus is a pathogen responsible for severe seasonal epidemics threatening human and animal populations every year. One of the ten major proteins encoded by the viral genome, the matrix protein M1, is abundantly produced in infected cells and plays a structural role in determining the morphology of the virus. During assembly of new viral particles, M1 is recruited to the host cell membrane where it associates with lipids and other viral proteins. The structure of M1 is only partially known. In particular, structural details of M1 interactions with the cellular plasma membrane as well as M1–protein interactions and multimerization have not been clarified, yet.In this work, we employed a set of complementary experimental and theoretical tools to tackle these issues. Using raster image correlation, surface plasmon resonance and circular dichroism spectroscopies, we quantified membrane association and oligomerization of full-length M1 and of different genetically engineered M1 constructs (i.e., N- and C-terminally truncated constructs and a mutant of the polybasic region, residues 95–105). Furthermore, we report novel information on structural changes in M1 occurring upon binding to membranes. Our experimental results are corroborated by an all-atom model of the full-length M1 protein bound to a negatively charged lipid bilayer.  相似文献   

16.
The Mason–Pfizer monkey virus is a type D retrovirus, which assembles its immature particles in the cytoplasm prior to their transport to the host cell membrane. The association with the membrane is mediated by the N‐terminally myristoylated matrix protein. To reveal the role of particular residues which are involved in the capsid‐membrane interaction, covalent labelling of arginine, lysine and tyrosine residues of the Mason–Pfizer monkey virus matrix protein bound to artificial liposomes containing 95% of phosphatidylcholine and 5% phosphatidylinositol‐(4,5)‐bisphosphate (PI(4,5)P2) was performed. The experimental results were interpreted by multiscale molecular dynamics simulations. The application of these two complementary approaches helped us to reveal that matrix protein specifically recognizes the PI(4,5)P2 molecule by the residues K20, K25, K27, K74, and Y28, while the residues K92 and K93 stabilizes the matrix protein orientation on the membrane by the interaction with another PI(4,5)P2 molecule. Residues K33, K39, K54, Y66, Y67, and K87 appear to be involved in the matrix protein oligomerization. All arginine residues remained accessible during the interaction with liposomes which indicates that they neither contribute to the interaction with membrane nor are involved in protein oligomerization. Proteins 2016; 84:1717–1727. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
In the influenza virus ribonucleoprotein complex, the oligomerization of the nucleoprotein is mediated by an interaction between the tail-loop of one molecule and the groove of the neighboring molecule. In this study, we show that phosphorylation of a serine residue (S165) within the groove of influenza A virus nucleoprotein inhibits oligomerization and, consequently, ribonucleoprotein activity and viral growth. We propose that nucleoprotein oligomerization in infected cells is regulated by reversible phosphorylation.  相似文献   

18.
The matrix (M) protein of Sendai virus (SeV) has five cysteine residues, at positions 83, 106, 158, 251, and 295. To determine the roles of the cysteine residues in viral assembly, we generated mutant M cDNA possessing a substitution to serine at one of the cysteine residues or at all of the cysteine residues. Some mutant M proteins were unstable when expressed in cultured cells, suggesting that cysteine residues affect protein stability, probably by disrupting the proper conformation. In an attempt to generate virus from cDNA, SeV M-C(83)S, SeV M-C(106)S, and SeV M-C(295)S were successfully recovered from cDNA, while recombinant SeVs possessing other mutations were not. SeV M-C(83)S and SeV M-C(106)S had smaller virus particles than did the wild-type SeV, whereas SeV M-C(295)S had larger and heterogeneously sized particles. Furthermore, SeV M-C(106)S had a significant amount of empty particles lacking nucleocapsids. These results indicate that a single-point mutation at a cysteine residue of the M protein affects virus morphology and nucleocapsid incorporation, showing direct involvement of the M protein in SeV assembly. Cysteine-dependent conformation of the M protein was not due to disulfide bond formation, since the cysteines were shown to be free throughout the viral life cycle.  相似文献   

19.
The phospholipase Cγ1 (PLCγ1) is essential for T‐cell signaling and activation in hepatic cancer immune response, which has a regulatory Src homology 3 (SH3) domain that can specifically recognize and interact with the PXXP‐containing decapeptide segment (185QP P VP P QRPM194, termed as SLP76185–194 peptide) of adaptor protein SLP76 following T‐cell receptor ligation. The isolated peptide can only bind to the PLCγ1 SH3 domain with a moderate affinity due to lack of protein context support. Instead of the traditional natural residue mutagenesis that is limited by low structural diversity and shifted target specificity, we herein attempt to improve the peptide affinity by replacing the two key proline residues Pro187 and Pro190 of SLP76185–194 PXXP motif with nonnatural N‐substituted amino acids, as the proline is the only endogenous N‐substituted amino acid. The replacement would increase peptide flexibility but can restore peptide activity by establishing additional interactions with the domain. Structural analysis reveals that the domain pocket can be divided into a large amphipathic region and a small negatively charged region; they accommodate hydrophobic, aromatic, polar, and moderate‐sized N‐substituted amino acid types. A systematic replacement combination profile between the peptide residues Pro187 and Pro190 is created by structural modeling, dynamics simulation, and energetics analysis, from which six improved and two reduced N‐substituted peptides as well as native SLP76185–194 peptide are identified and tested for their binding affinity to the recombinant protein of the human PLCγ1 SH3 domain using fluorescence‐based assays. Two N‐substituted peptides, SLP76185–194(N‐Leu187/N‐Gln190) and SLP76185–194(N‐Thr187/N‐Gln190), are designed to have high potency (Kd = 0.67 ± 0.18 and 1.7 ± 0.3 μM, respectively), with affinity improvement by, respectively, 8.5‐fold and 3.4‐fold relative to native peptide (Kd = 5.7 ± 1.2 μM).  相似文献   

20.
The 2009 pandemic influenza virus (pH1N1) is a swine-origin reassortant containing human, avian, and swine influenza genes. We have previously shown that the polymerase complex of the pH1N1 strain A/California/04/2009 (Cal) is highly active in mammalian 293T cells, despite the avian origin of both its PA and PB2. In this study, we analyzed the polymerase residues that are responsible for high pH1N1 polymerase activity in the mammalian host. Characterization of polymerase complexes containing various combinations of Cal and avian influenza virus A/chicken/Nanchang/3-120/01 (H3N2) (Nan) by reporter gene assay indicates that Cal PA, but not PB2, is a major contributing factor to high Cal polymerase activity in 293T cells. In particular, Cal PA significantly activates the otherwise inactive Nan polymerase at 37 and 39°C but not at the lower temperature of 34°C. Further analysis using site-directed mutagenesis showed that the Cal PA residues 85I, 186S, and 336M contribute to enhanced activity of the Cal polymerase. Recombinant A/WSN/33 (H1N1) (WSN) viruses containing Nan NP and polymerase (PA, PB1, PB2) genes with individual mutations in PA at residues 85, 186, and 336 produced higher levels of viral protein than the virus containing wild-type (WT) Nan PA. Interestingly, compared to the WT, the virus containing the 85I mutation grew faster in human A549 cells and the 336M mutation most significantly enhanced pathogenicity in a mouse model, among the three PA mutations tested. Our results suggest that multiple mutations in PA, which were rarely present in previous influenza isolates, are involved in mammalian adaptation and pathogenicity of the 2009 pH1N1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号