首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Salmonella invades epithelial cells and survives within a membrane‐bound compartment, the Salmonella‐containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time‐points. Vacuole interactions with endoplasmic reticulum‐derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper‐replication within the host cytosol. On the other hand, SCV interactions with VAMP7‐positive lysosome‐like vesicles promote Salmonella‐induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.  相似文献   

2.
Salmonella enterica serovar Typhimurium (S. Tm) is a facultative intracellular pathogen that induces entry into non‐phagocytic cells by a Type III secretion system (TTSS) and cognate effector proteins. Upon host cell entry, S. Tm expresses a second TTSS and subverts intracellular trafficking to create a replicative niche – the Salmonella‐containing vacuole (SCV). SopE, a guanidyl exchange factor (GEF) for Rac1 and Cdc42, is translocated by the TTSS‐1 upon host cell contact and promotes entry through triggering of actin‐dependent ruffles. After host cell entry, the bulk of SopE undergoes proteasomal degradation. Here we show that a subfraction is however detectable on the nascent SCV membrane up to ~ 6 h post infection. Membrane localization of SopE and the closely related SopE2 differentially depend on the Rho‐GTPase‐binding GEF domain, and to some extent involves also the unstructured N‐terminus. SopE localizes transiently to the early SCV, dependent on continuous synthesis and secretion by the TTSS‐1 during the intracellular state. Mutant strains lacking SopE or SopE2 are attenuated in early intracellular replication, while complementation restores this defect. Hence, the present study reveals an unanticipated role for SopE and SopE2 in establishing the Salmonella replicative niche, and further emphasizes the importance of entry effectors in later stages of host‐cell manipulation.  相似文献   

3.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

4.
The ability of Salmonella to survive and replicate within mammalian host cells involves the generation of a membranous compartment known as the Salmonella‐containing vacuole (SCV). Salmonella employs a number of effector proteins that are injected into host cells for SCV formation using its type‐3 secretion systems encoded in SPI‐1 and SPI‐2 (T3SS‐1 and T3SS‐2, respectively). Recently, we reported that S. Typhimurium requires T3SS‐1 and T3SS‐2 to survive in the model amoeba Dictyostelium discoideum. Despite these findings, the involved effector proteins have not been identified yet. Therefore, we evaluated the role of two major S. Typhimurium effectors SopB and SifA during D. discoideum intracellular niche formation. First, we established that S. Typhimurium resides in a vacuolar compartment within D. discoideum. Next, we isolated SCVs from amoebae infected with wild type or the ΔsopB and ΔsifA mutant strains of S. Typhimurium, and we characterised the composition of this compartment by quantitative proteomics. This comparative analysis suggests that S. Typhimurium requires SopB and SifA to modify the SCV proteome in order to generate a suitable intracellular niche in D. discoideum. Accordingly, we observed that SopB and SifA are needed for intracellular survival of S. Typhimurium in this organism. Thus, our results provide insight into the mechanisms employed by Salmonella to survive intracellularly in phagocytic amoebae.  相似文献   

5.
Salmonella enterica serovar Typhimurium (STM) is an invasive, facultative intracellular pathogen that has evolved sophisticated molecular mechanisms to establish an intracellular niche within a specialised vesicular compartment, the Salmonella‐containing vacuole (SCV). The loss of the SCV and release of STM into the cytosol of infected host cells was observed, and a bimodal intracellular lifestyle of STM in the SCV versus life in the cytosol is currently discussed. We set out to investigate the parameters affecting SCV integrity and cytosolic release. A fluorescent protein‐based cytosolic reporter approach was established to quantify, time‐resolved, and on a single cell level, the release of STM into the cytosol of host cells. We observed that the extent of SCV damage and cytosolic release is highly dependent on experimental conditions such as multiplicity of infection, type of host cell line, and STM strain background. Trigger invasion mediated by the Salmonella Pathogenicity Island 1‐encoded type III secretion system (SPI1‐T3SS) and its effector proteins promoted cytosolic release, whereas cytosolic bacteria were rarely observed if entry was mediated by zipper invasion. Presence of SPI1‐T3SS effector SopE was identified as major factor for damage of the SCV in the early phase after STM invasion and sopE‐expressing strains showed higher levels of cytosolic release.  相似文献   

6.
During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella.  相似文献   

7.
Many bacterial pathogens use specialized secretion systems to deliver virulence effector proteins into eukaryotic host cells. The function of these effectors depends on their localization within infected cells, but the mechanisms determining subcellular targeting of each effector are mostly elusive. Here, we show that the Salmonella type III secretion effector SteA binds specifically to phosphatidylinositol 4‐phosphate [PI(4)P]. Ectopically expressed SteA localized at the plasma membrane (PM) of eukaryotic cells. However, SteA was displaced from the PM of Saccharomyces cerevisiae in mutants unable to synthesize the local pool of PI(4)P and from the PM of HeLa cells after localized depletion of PI(4)P. Moreover, in infected cells, bacterially translocated or ectopically expressed SteA localized at the membrane of the Salmonella‐containing vacuole (SCV) and to Salmonella‐induced tubules; using the PI(4)P‐binding domain of the Legionella type IV secretion effector SidC as probe, we found PI(4)P at the SCV membrane and associated tubules throughout Salmonella infection of HeLa cells. Both binding of SteA to PI(4)P and the subcellular localization of ectopically expressed or bacterially translocated SteA were dependent on a lysine residue near the N‐terminus of the protein. Overall, this indicates that binding of SteA to PI(4)P is necessary for its localization within host cells.  相似文献   

8.
The invasion of polarized epithelial cells by Salmonella enterica requires the cooperative activity of the Salmonella pathogenicity island (SPI) 1‐encoded type III secretion system (T3SS) and the SPI4‐encoded giant non‐fimbrial adhesin SiiE. SiiE is a highly repetitive protein composed of 53 bacterial Ig (BIg) domains and mediates binding to the apical side of polarized epithelial cells. We analysed the binding properties of SiiE and observed lectin‐like activity. SiiE‐dependent cell invasion can be ablated by chemical or enzymatic deglycosylation. Lectin blockade experiments revealed that SiiE binding is specific for glycostructures with terminal N‐acetyl‐glucosamine (GlcNAc) and/or α 2,3‐linked sialic acid. In line with these data, we found that SiiE‐expressing Salmonella bind to the GlcNAc polymer chitin. Various recombinant SiiE fragments were analysed for host cell binding. We observed that C‐terminal portions of SiiE bind to the apical side of polarized cells and the intensity of binding increases with the number of BIg domains present in the recombinant proteins. Based on these results, we propose that SiiE mediates multiple interactions per molecule with glycoproteins and/or glycosylated phospholipids present in the apical membrane of polarized epithelial cells. Thisintimate binding enables the subsequent function of the SPI1‐T3SS, resulting in host cell invasion.  相似文献   

9.
Salmonella enterica is a common foodborne, facultative intracellular enteropathogen. Human-restricted typhoidal S. enterica serovars Typhi (STY) or Paratyphi A (SPA) cause severe typhoid or paratyphoid fever, while many S. enterica serovar Typhimurium (STM) strains have a broad host range and in human hosts usually lead to a self-limiting gastroenteritis. Due to restriction of STY and SPA to primate hosts, experimental systems for studying the pathogenesis of typhoid and paratyphoid fever are limited. Therefore, STM infection of susceptible mice is commonly considered as model system for studying these diseases. The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI2-T3SS) is a key factor for intracellular survival of Salmonella. Inside host cells, the pathogen resides within the Salmonella-containing vacuole (SCV) and induces tubular structures extending from the SCV, termed Salmonella-induced filaments (SIF). This study applies single cell analyses approaches, which are flow cytometry of Salmonella harboring dual fluorescent protein reporters, effector translocation, and correlative light and electron microscopy to investigate the fate and activities of intracellular STY and SPA. The SPI2-T3SS of STY and SPA is functional in translocation of effector proteins, SCV and SIF formation. However, only a low proportion of intracellular STY and SPA are actively deploying SPI2-T3SS and STY and SPA exhibited a rapid decline of protein biosynthesis upon experimental induction. A role of SPI2-T3SS for proliferation of STY and SPA in epithelial cells was observed, but not for survival or proliferation in phagocytic host cells. Our results indicate that reduced intracellular activities are factors of the stealth strategy of STY and SPA and facilitate systemic spread and persistence of the typhoidal Salmonella.  相似文献   

10.
11.
Salmonellae have the ability to invade, persist and replicate within an intracellular phagosome termed the Salmonella‐containing vacuole (SCV). Salmonellae alter lipid and protein content of the SCV membrane and manipulate cytoskeletal elements in contact with the SCV using the Salmonella pathogenicity island 1 (SPI‐2) type III secretion system effectors. These modifications result in microtubular‐based movement and morphological changes, which include endosomal tubulation of the SCV membrane. SseJ is a SPI‐2 effector that localizes to the cytoplasmic face of the SCV and esterifies cholesterol through its glycerophospholipid : cholesterol acyltransferase activity. SseJ enzymatic activity as well as localization to the SCV are determined by binding to the small mammalian GTPase, RhoA. This review will focus on current knowledge about the role of SseJ in SCV membrane modification and will discuss how the hypothesis that a major role of SPI‐2 effectors is to modify SCV protein and lipid content to promote bacterial intracellular survival.  相似文献   

12.
Intracellular membrane fusion is mediated by membrane-bridging complexes of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). SNARE proteins are one of the key players in vesicular transport. Several reports shed light on intracellular bacteria modulating host SNARE machinery to establish infection successfully. The critical SNAREs in macrophages responsible for phagosome maturation are Syntaxin 3 (STX3) and Syntaxin 4 (STX4). Reports also suggest that Salmonella actively modulates its vacuole membrane composition to escape lysosomal fusion. Salmonella containing vacuole (SCV) harbours recycling endosomal SNARE Syntaxin 12 (STX12). However, the role of host SNAREs in SCV biogenesis and pathogenesis remains unclear. Upon knockdown of STX3, we observed a reduction in bacterial proliferation, which is concomitantly restored upon the overexpression of STX3. Live-cell imaging of Salmonella-infected cells showed that STX3 localises to the SCV membranes and thus might help in the fusion of SCV with intracellular vesicles to acquire membrane for its division. We also found the interaction STX3-SCV was abrogated when we infected with SPI-2 encoded Type 3 secretion system (T3SS) apparatus mutant (STM ∆ssaV) but not with SPI-1 encoded T3SS apparatus mutant (STM ∆invC). These observations were also consistent in the mice model of Salmonella infection. Together, these results shed light on the effector molecules secreted through T3SS encoded by SPI-2, possibly involved in interaction with host SNARE STX3, which is essential to maintain the division of Salmonella in SCV and help to maintain a single bacterium per vacuole.  相似文献   

13.

Background  

Type III secretion systems (T3SS) are essential virulence factors of most Gram-negative bacterial pathogens. T3SS deliver effector proteins directly into the cytoplasm of eukaryotic target cells and for this function, the insertion of a subset of T3SS proteins into the target cell membrane is important. These proteins form hetero-oligomeric pores acting as translocon for the delivery of effector proteins. Salmonella enterica is a facultative intracellular pathogen that uses the Salmonella Pathogenicity Island 2 (SPI2)-encoded T3SS to manipulate host cells in order to survive and proliferate within the Salmonella-containing vacuole of host cells. Previous work showed that SPI2-encoded SseB, SseC and SseD act to form the translocon of the SPI2-T3SS.  相似文献   

14.
Salmonella pathogenesis is dependent on its ability to invade and replicate within host cells. Following invasion the bacteria remain within a modified phagosome known as the Salmonella-containing vacuole (SCV), within which they will survive and replicate. Invasion and SCV biogenesis are dependent on two Type III secretion systems, T3SS1 and T3SS2, which are used to translocate distinct cohorts of bacterial effector proteins into the host cell. Elucidating the roles of individual effector proteins in SCV biogenesis has proven difficult but several distinct themes are now emerging and it is apparent that SCV biogenesis is an extremely dynamic process involving; extensive membrane remodeling, interactions with the endolysosomal pathway, actin rearrangements and microtubule-based movement and tubule extension.  相似文献   

15.
The giant non‐fimbrial adhesin SiiE is essential to establish intimate contact between Salmonella enterica and the apical surface of polarized epithelial cells. SiiE is secreted by a type I secretion system (T1SS) encoded by Salmonella Pathogenicity Island 4 (SPI4). We identified SiiA and SiiB as two regulatory proteins encoded by SPI4. Mutant strains in siiA or siiB still secrete SiiE, but are highly reduced in adhesion to, and invasion of polarized cells. SiiA and SiiB are inner membrane proteins with one and three transmembrane (TM) helices respectively. TM2 and TM3 of SiiB are similar to members of the ExbB/TolQ family, while the TM of SiiA is similar to MotB and a conserved aspartate residue in this TM is essential for SPI4‐encoded T1SS function. Co‐immunoprecipitation, bacterial two‐hybrid and FRET demonstrate homo‐ and heterotypic protein interactions for SiiA and SiiB. SiiB, but not SiiA also interacts with the SPI4‐T1SS ATPase SiiF. The integrity of the Walker A box in SiiF was required for SiiB–SiiF interactionand SiiF dimer formation. Based on these data, we describe SiiA and SiiB as new, exclusively virulence‐associated members of the Mot/Exb/Tol family of membrane proteins. Both proteins are involved in a novel mechanism of controlling SPI4‐T1SS‐dependent adhesion, most likely by formation of a proton‐conducting channel.  相似文献   

16.
3‐phosphorylated phosphoinositides (3‐PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA‐mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time‐lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P2 in macropinosome‐late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P2‐dependent step is required for the proper maturation of the Salmonella‐containing vacuole (SCV) through the formation of Salmonella‐induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2‐encoded type 3 secretion system (SPI2‐T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.  相似文献   

17.
During intracellular life, Salmonella enterica proliferate within a specialized membrane compartment, the Salmonella-containing vacuole (SCV), and interfere with the microtubule cytoskeleton and cellular transport. To characterize the interaction of intracellular Salmonella with host cell transport processes, we utilized various model systems to follow microtubule-dependent transport. The vesicular stomatitis virus glycoprotein (VSVG) is a commonly used marker to follow protein transport from the Golgi to the plasma membrane. Using a VSVG-GFP fusion protein, we observed that virulent intracellular Salmonella alter exocytotic transport and recruit exocytotic transport vesicles to the SCV. This virulence function was dependent on the function of the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) and more specifically on a subset of SPI2 effector proteins. Furthermore, the Golgi to plasma membrane traffic of the shingolipid C(5)-ceramide was redirected to the SCV by virulent Salmonella. We propose that Salmonella modulates the biogenesis of the SCV by deviating this compartment from the default endocytic pathway to an organelle that interacts with the exocytic pathway. This observation might reveal a novel element of the intracellular survival and replication strategy of Salmonella.  相似文献   

18.
The intracellular pathogenic bacterium Salmonella enterica serovar typhimurium (Salmonella) relies on acidification of the Salmonella‐containing vacuole (SCV) for survival inside host cells. The transport and fusion of membrane‐bound compartments in a cell is regulated by small GTPases, including Rac and members of the Rab GTPase family, and their effector proteins. However, the role of these components in survival of intracellular pathogens is not completely understood. Here, we identify Nischarin as a novel dual effector that can interact with members of Rac and Rab GTPase (Rab4, Rab14 and Rab9) families at different endosomal compartments. Nischarin interacts with GTP‐bound Rab14 and PI(3)P to direct the maturation of early endosomes to Rab9/CD63‐containing late endosomes. Nischarin is recruited to the SCV in a Rab14‐dependent manner and enhances acidification of the SCV. Depletion of Nischarin or the Nischarin binding partners—Rac1, Rab14 and Rab9 GTPases—reduced the intracellular growth of Salmonella. Thus, interaction of Nischarin with GTPases may regulate maturation and subsequent acidification of vacuoles produced after phagocytosis of pathogens.  相似文献   

19.

Background  

Salmonella enterica is a facultative intracellular pathogen that replicates within a membrane-bound compartment termed Salmonella containing vacuole (SCV). The biogenesis of SCV requires Salmonella type III protein secretion/translocation system and their effector proteins which are translocated into host cells to exploit the vesicle trafficking pathways. SseF is one of these effectors required for SCV formation and Intracellular Salmonella replication through unknown mechanisms.  相似文献   

20.
Salmonella enterica serovar Typhimurium is an intracellular pathogen that grows within a modified endomembrane compartment, the Salmonella‐containing vacuole (SCV). Maturation of nascent SCVs involves the recruitment of early endosome markers and the remodelling of phosphoinositides at the membrane of the vacuole, in particular the production of phosphatidylinositol 3‐phosphate [PI(3)P]. Sorting nexins (SNXs) are a family of proteins characterized by the presence of a phox homology (PX) domain that binds to phosphoinositides and are involved in intracellular trafficking in eukaryotic cells. We therefore studied whether sorting nexins, particularly sorting nexin 3 (SNX3), play a role in Salmonella infection. We found that SNX3 transiently localized to SCVs at early times post invasion (10 min) and presented a striking tubulation phenotype in the vicinity of SCVs at later times (30–60 min). The bacterial effector SopB, which is known to promote PI(3)P production on SCVs, was required for the formation of SNX3 tubules. In addition, RAB5 was also required for the formation of SNX3 tubules. Depletion of SNX3 by siRNA impaired RAB7 and LAMP1 recruitment to the SCV. Moreover, the formation of Salmonella‐induced filaments (Sifs) was altered by SNX3 knock‐down. Therefore, SNX3 plays a significant role in regulating the maturation of SCVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号