首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The infection by Salmonella enterica results in the massive remodeling of the endosomal system of eukaryotic host cells. One unique consequence is the formation of long tubular endosomal compartments, so-called Salmonella-induced filaments (SIF). Formation of SIF requires the function of type III secretion system and is a requirement of efficient intracellular proliferation of Salmonella. Using high-resolution live cell imaging approaches and electron microscopy, we report for the first time the highly dynamic characteristics of SIF and their ultrastructural properties. In the early phase of infection (4-5 h), SIF display highly dynamic properties in various types of host cells. SIF extend, branch and contract rapidly, and a stabilized network of SIF is formed later (>or=8 h after infection). The velocities of SIF extension and contraction in the different phases of infection were quantified. Our observations lead to novel models for the modification of host cell transport processes by virulence factors of intracellular Salmonella.  相似文献   

2.
Intracellular Salmonella enterica translocate effector proteins that modify microtubule-dependent transport processes of the host cell and modulate the biogenesis of the Salmonella-containing vacuole (SCV). One functional consequence is the induction of tubular aggregates of endosomal membranes, termed Salmonella-induced filaments or SIFs, and further tubular membrane compartments have recently been described. SIFs are unique, highly dynamic compartments that form by modification of vesicular transport on microtubules. The molecular mechanism of the interference of intracellular Salmonella with host cell vesicular transport is still elusive, but recent studies demonstrate the complexity of pathogenic activities and the intricacy of manipulating host cell functions.  相似文献   

3.
4.
Autophagy is responsible for the degradation of cytosolic components within eukaryotic cells. Interestingly, autophagy also appears to play a role in recognizing invading intracellular pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that normally resides and replicates within the Salmonella-containing vacuole (SCV). However, during in vitro infection a population of S. Typhimurium damage and escape from the SCV to enter the cytosol. We have observed that some intracellular S. Typhimurium are recognized by autophagy under in vitro infection conditions. Immunofluorescence studies revealed that autophagy recognizes the population of S. Typhimurium within damaged SCVs early after infection. The consequences of autophagic recognition of S. Typhimurium are still being elucidated, though a restrictive effect on intracellular bacterial replication has been demonstrated. Results of our in vitro infection studies are consistent with autophagy playing a role in cellular defense against S. Typhimurium that become exposed to the cytosol.  相似文献   

5.
6.
7.
During intracellular life, the bacterial pathogen Salmonella enterica translocates a complex cocktail of effector proteins by means of the SPI2-encoded type III secretions system. The effectors jointly modify the endosomal system and vesicular transport in host cells. SseF and SseG are two effectors encoded by genes within Salmonella Pathogenicity Island 2 and both effector associate with endosomal membranes and microtubules and are involved in the formation of Salmonella-induced filaments. Our previous deletional analyses identified protein domains of SseF required for the effector function. Here we present a detailed mutational analysis that identifies a short hydrophobic motif as functionally essential. We demonstrate that SseF and SseG are still functional if translocated as a single fusion protein, but also mediate effector function if translocated in cells co-infected with sseF and sseG strains. SseF has characteristics of an integral membrane protein after translocation into host cells.  相似文献   

8.
9.
The membrane topology of the ZntB Zn(2+) transport protein of Salmonella enterica serovar Typhimurium was determined by constructing deletion derivatives of the protein and genetically fusing them to blaM or lacZ cassettes. The enzymatic activities of the hybrid proteins indicate that ZntB is a bitopic integral membrane protein consisting largely of two independent domains. The first 266 amino acids form a large, highly charged domain within the cytoplasm, while the remaining 61 residues form a small membrane domain containing two membrane-spanning segments. The overall orientation towards the cytoplasm is consistent with the ability of ZntB to facilitate zinc efflux.  相似文献   

10.
Intracellular survival and replication within eukaryotic host cells is of central importance for the pathogenesis of infections caused by Salmonella enterica. Intracellular Salmonella translocates a set of effector proteins by means of a type III secretion system (T3SS) encoded by Salmonella pathogenicity island 2 (SPI2) that manipulates normal host-cell functions. Intracellular survival and replication is linked to the function of the SPI2-T3SS, but recent observations show that many additional cellular functions are targeted by this virulence system. In this review, we focus on the recent observations on the interference of intracellular Salmonella with functions of the innate and adaptive immune system and the modification of endocytic and exocytic cellular transport. The common molecular basis of the different SPI2-dependent phenotypes could be the interference with cellular transport along microtubules.  相似文献   

11.
The invasiveness of Salmonella enterica serovar Typhimurium (S. Typhimurium) is closely associated with the Salmonella pathogenicity island (SPI)‐encoded type Ⅲ secretion system (T3SS), which can directly inject a series of effector proteins into eukaryotic cells to enable bacterial infection. In this study, syringaldehyde was identified as an effective inhibitor of the S. Typhimurium T3SS using an effector protein‐lactamase fusion reporter system. Syringaldehyde treatment could inhibit the expression of important effector proteins (SipA, SipB and SipC) at a concentration of 0.18 mM without affecting bacterial growth. Additionally, significant inhibition of bacterial invasion and cellular injury was observed following the syringaldehyde treatment in the co‐infection system of HeLa cells and S. Typhimurium. Furthermore, treatment with syringaldehyde provided systemic protection to mice infected with S. Typhimurium, reducing mortality (40.00%) and bacterial loads and relieving caecal damage and systemic inflammation. The results presented in this study indicate that syringaldehyde significantly affects T3SS activity and is a potential leading compound for treating S. Typhimurium infections.  相似文献   

12.
Camacho EM  Casadesús J 《Genetics》2001,157(2):491-502
MudP and MudQ elements were used to induce duplications in Salmonella enterica by formation of a triple crossover between two transduced fragments and the host chromosome. The large size (36 kb) of MudP and MudQ is a favorable trait for duplication formation, probably because homology length is a limiting factor for the central crossover. Additional requirements are a multiplicity of infection of 2 or higher in the infecting phage suspensions (which reflects the need of two transduced fragments) and an exponentially growing recipient (which reflects the need of a chromosome replication fork). We describe a set of 11 strains of S. enterica, each carrying a chromosomal duplication with known endpoints. The collection covers all the Salmonella chromosome except the terminus. For mapping, a dominant marker (e.g., a transposon insertion in or near the locus to be mapped) is transduced into the 11-strain set. Several transductants from each cross are grown nonselectively, and haploid segregants are scored for the presence of the marker. If all the segregants contain the transduced marker, it maps outside the duplication interval. If the marker is found only in a fraction of the segregants, it maps within the duplicated region.  相似文献   

13.
Repetitive extragenic palindromic sequence-based PCR (rep-PCR) utilizing a semi-automated system, was evaluated as a method to determine Salmonella serotypes. A group of 216 Salmonella isolates belonging to 13 frequently isolated serotypes and one rarer serotype from poultry were used to create a DNA fingerprint library with the DiversiLab System software. Subsequently, a blinded set of 44 poultry isolates were fingerprinted and queried against the library in an attempt to putatively assign a serotype designation to each Salmonella isolate. The query isolates were previously typed employing standard serological techniques. Utilizing pair-wise similarity percentages as calculated by the Pearson correlation coefficient, the predicted serotype of 28 isolates matched the serological typing result. For eight isolates, rep-PCR results were interpreted as one of two very closely-related serotypes, Hadar and the rarer Istanbul. Traditional serological assays have difficulty distinguishing between these groups, and sequencing interspacer regions of the rrfH gene was unable to differentiate among isolates of these two serovars. Six of the remaining isolates resulted in no match to the database (similarity values <95%) and these indeed proved to be serotypes not included in the original library. The two remaining samples proved discrepant at the 95% similarity threshold, however examination of electropherograms clearly indicated fingerprint variability between query and library samples, suggesting an expanded rep-PCR library will be necessary for increased utility. Since serological assays can take several days to weeks to provide information, the DiversiLab System holds promise for more rapid serotype classification for members of this group.  相似文献   

14.
Invasion of the intestinal epithelium is a critical step in Salmonella enterica infection and requires functions encoded in the gene cluster known as Salmonella Pathogenicity Island 1 (SPI-1). Expression of SPI-1 genes is repressed by l-arabinose, and not by other pentoses. Transport of l-arabinose is necessary to repress SPI-1; however, repression is independent of l-arabinose metabolism and of the l-arabinose-responsive regulator AraC. SPI-1 repression by l-arabinose is exerted at a single target, HilD, and the mechanism appears to be post-translational. As a consequence of SPI-1 repression, l-arabinose reduces translocation of SPI-1 effectors to epithelial cells and decreases Salmonella invasion in vitro. These observations reveal a hitherto unknown role of l-arabinose in gene expression control and raise the possibility that Salmonella may use L-arabinose as an environmental signal.  相似文献   

15.
16.
Protein transport between the membranous compartments of the eukaryotic cells is mediated by the constant fission and fusion of the membrane-bounded vesicles from a donor to an acceptor membrane. While there are many membrane remodelling complexes in eukaryotes, COPII, COPI, and clathrin-coated vesicles are the three principal classes of coat protein complexes that participate in vesicle trafficking in the endocytic and secretory pathways. These vesicle-coat proteins perform two key functions: deforming lipid bilayers into vesicles and encasing selective cargoes. The three trafficking complexes share some commonalities in their structural features but differ in their coat structures, mechanisms of cargo sorting, vesicle formation, and scission. While the structures of many of the proteins involved in vesicle formation have been determined in isolation by X-ray crystallography, elucidating the proteins' structures together with the membrane is better suited for cryogenic electron microscopy (cryo-EM). In recent years, advances in cryo-EM have led to solving the structures and mechanisms of several vesicle trafficking complexes and associated proteins.  相似文献   

17.
The Salmonella enterica virulence-associated protein SpvB was recently shown to contain a carboxy-terminal mono(ADP-ribosyl)transferase domain. We demonstrate here that the catalytic domain of SpvB as well bacterial extracts containing full-length SpvB modifies a 43 kDa protein from macrophage-like J774-A.1 and epithelial MDCK cells as shown by label transfer from [32P]-nicotinamide adenine dinucleotide (NAD) to the 43 kDa protein. When analysed by two-dimensional gel electrophoresis, the same protein was modified in cells infected with S. enterica serovariant Dublin strain SH9325, whereas infection with an isogenic spvB mutant strain did not result in modification. Immunoprecipitation and immunoblotting experiments using SH9325-infected cells identified the modified protein as actin. The isolated catalytic domain of SpvB mediated transfer of 32P from [32P]-NAD to actins from various sources in vitro, whereas isolated eukaryotic control proteins or bacterial proteins were not modified. In an in vitro actin polymerization assay, the isolated catalytic SpvB domain prevented the conversion of G actin into F actin. Microscopic examination of MDCK cells infected with SH9325 revealed morphological changes and loss of filamentous actin content, whereas cells infected with the spvB mutant remained virtually unaffected. We conclude that actin is a target for an SpvB-mediated modification, most probably ADP-ribosylation, and that the modification of G actin interferes with actin polymerization.  相似文献   

18.
19.
20.
A multiplex PCR based assay was developed for the identification of the genus Salmonella. Five sets of primers from different genomic sequences such as fimA, himA, hns, invA and hto genes were selected for the identification of serogroups of Salmonella enterica such as S. Typhi, S. ParatyphiA, S. Typhimurium, S. Enteritidis and S. Weltevreden. The selected primers amplified products with the sizes of 85, 123, 152, 275 and 496 bp, respectively, for the genus Salmonella. This assay was found to be highly sensitive, as it could detect 5 cells of Salmonella and 1,000 fg of genomic DNA. Amplification of DNA extracted from other genera viz. V. cholerae and E. coli yielded negative results. This assay provides specific and reliable results and allows for the cost–effective detection of Salmonella in one reaction tube in mixed bacterial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号