首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
TolC is an outer membrane porin protein and an essential component of drug efflux and type-I secretion systems in Gram-negative bacteria. TolC comprises a periplasmic alpha- helical barrel domain and a membrane-embedded beta-barrel domain. TdeA, a functional and structural homolog of TolC, is required for toxin and drug export in the pathogenic oral bacterium Actinobacillus actinomycetemcomitans. Here, we report the expression of the periplasmic domain of TdeA as a soluble protein by substitution of the membraneembedded domain with short linkers, which enabled us to purify the protein in the absence of detergent. We confirmed the structural integrity of the TdeA periplasmic domain by size-exclusion chromatography, circular dichroism spectroscopy, and electron microscopy, which together showed that the periplasmic domain of the TolC protein family can fold correctly on its own. We further demonstrated that the periplasmic domain of TdeA interacts with peptidoglycans of the bacterial cell wall, which supports the idea that completely folded TolC family proteins traverse the peptidoglycan layer to interact with inner membrane transporters.  相似文献   

2.
The gram-negative oral and systemic pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans produces a leukotoxin (LtxA) that is a member of the RTX (repeats in toxin) family of secreted bacterial toxins. We have recently shown that LtxA has the ability to lyse erythrocytes, which results in a beta-hemolytic phenotype on Columbia blood agar. To determine if LtxA is regulated by iron, we examined beta-hemolysis under iron-rich and iron-limiting conditions. Beta-hemolysis was suppressed in the presence of FeCl3. In contrast, strong beta-hemolysis occurred in the presence of the iron chelator deferoxamine. We found that secretion of LtxA was completely inhibited by free iron, but expression of ltxA was not regulated by iron. Free chromium, cobalt, and magnesium did not affect LtxA secretion. Other LtxA-associated genes were not regulated by iron. Thus, iron appears to play an important role in the regulation of LtxA secretion in A. actinomycetemcomitans in a manner independent of gene regulation.  相似文献   

3.
For translocation across the cell envelope of Gram-negative bacteria, substances have to overcome two permeability barriers, the inner and outer membrane. Channel-tunnels are outer membrane proteins, which are central to two distinct export systems: the type I secretion system exporting proteins such as toxins or proteases, and efflux pumps discharging antibiotics, dyes, or heavy metals and thus mediating drug resistance. Protein secretion is driven by an inner membrane ATP-binding cassette (ABC) transporter while drug efflux occurs via an inner membrane proton antiporter. Both inner membrane transporters are associated with a periplasmic accessory protein that recruits an outer membrane channel-tunnel to form a functional export complex. Prototypes of these export systems are the hemolysin secretion system and the AcrAB/TolC drug efflux pump of Escherichia coli, which both employ TolC as an outer membrane component. Its remarkable conduit-like structure, protruding 100 ? into the periplasmic space, reveals how both systems are capable of transporting substrates across both membranes directly from the cytosol into the external environment. Proteins of the channel-tunnel family are widespread within Gram-negative bacteria. Their involvement in drug resistance and in secretion of pathogenic factors makes them an interesting system for further studies. Understanding the mechanism of the different export apparatus could help to develop new drugs, which block the efflux pumps or the secretion system. Electronic Publication  相似文献   

4.
The RTX (repeats in toxin) family of toxins is important in the pathogenesis of many Gram-negative bacteria. The oral and systemic human pathogen Actinobacillus actinomycetemcomitans produces a member of this family known as leukotoxin (LtxA). Previously, we found that LtxA is secreted into culture supernatants of A. actinomycetemcomitans and that this protein is abundant and relatively pure. Here, we report a large-scale method for the isolation and purification of LtxA from culture supernatants of A. actinomycetemcomitans strain JP2. The purification scheme involves ammonium sulfate precipitation of culture supernatants, dialysis, and ultrafiltration to concentrate LtxA to approximately 10mg/ml. We found that LtxA remained soluble in buffer that contained at least 250mM NaCl. Purified LtxA was >98% pure and the final preparations were active against HL-60 cells. The entire purification protocol can be completed within 2 days. The ability to readily obtain a large amount of purified leukotoxin should accelerate investigations into the structure and biology of this important virulence factor.  相似文献   

5.
Aggregatibacter actinomycetemcomitans is an oral pathogen causing localized aggressive periodontitis (LAP). Recently, we characterized for the first time a quinol peroxidase (QPO) that catalyzes peroxidase activity using quinol in the respiratory chain of A. actinomycetemcomitans for the reduction of hydrogen peroxide. In the present study, we characterized the phenotype of a QPO null mutant. The QPO null mutant shows an oxidative stress phenotype, suggesting that QPO plays a certain role in scavenging endogenously generated reactive oxygen species. Notably, we discovered that the QPO null mutant exhibits a production defect of leukotoxin (LtxA), which is a secreted bacterial toxin and is known to target human leukocytes and erythrocytes. This result suggests that QPO would be considered as a potential drug target to inhibit the expression of LtxA from A. actinomycetemcomitans for the treatment and prevention of LAP.  相似文献   

6.
The Gram-negative bacterium, Aggregatibacter actinomycetemcomitans, is a common inhabitant of the human upper aerodigestive tract. The organism produces an RTX (Repeats in ToXin) toxin (LtxA) that kills human white blood cells. LtxA is believed to be a membrane-damaging toxin, but details of the cell surface interaction for this and several other RTX toxins have yet to be elucidated. Initial morphological studies suggested that LtxA was bending the target cell membrane. Because the ability of a membrane to bend is a function of its lipid composition, we assessed the proficiency of LtxA to release of a fluorescent dye from a panel of liposomes composed of various lipids. Liposomes composed of lipids that form nonlamellar phases were susceptible to LtxA-induced damage while liposomes composed of lipids that do not form non-bilayer structures were not. Differential scanning calorimetry demonstrated that the toxin decreased the temperature at which the lipid transitions from a bilayer to a nonlamellar phase, while (31) P nuclear magnetic resonance studies showed that the LtxA-induced transition from a bilayer to an inverted hexagonal phase occurs through the formation of an isotropic intermediate phase. These results indicate that LtxA cytotoxicity occurs through a process of membrane destabilization.  相似文献   

7.
M Lee  SY Jun  BY Yoon  S Song  K Lee  NC Ha 《PloS one》2012,7(7):e40460
The Hly translocator complex of Escherichia coli catalyzes type I secretion of the toxin hemolysin A (HlyA). In this complex, HlyB is an inner membrane ABC (ATP Binding Cassette)-type transporter, TolC is an outer membrane channel protein, and HlyD is a periplasmic adaptor anchored in the inner membrane that bridges HlyB to TolC. This tripartite organization is reminiscent of that of drug efflux systems such as AcrA-AcrB-TolC and MacA-MacB-TolC of E. coli. We have previously shown the crucial role of conserved residues located at the hairpin tip region of AcrA and MacA adaptors during assembly of their cognate systems. In this study, we investigated the role of the putative tip region of HlyD using HlyD mutants with single amino acid substitutions at the conserved positions. In vivo and in vitro data show that all mutations abolished HlyD binding to TolC and resulted in the absence of HlyA secretion. Together, our results suggest that, similarly to AcrA and MacA, HlyD interacts with TolC in a tip-to-tip manner. A general model in which these conserved interactions induce opening of TolC during drug efflux and type I secretion is discussed.  相似文献   

8.
The heat-stable enterotoxin (ST) produced by enterotoxigenic Escherichia coli is an extracellular peptide toxin that evokes watery diarrhea in the host. Two types of STs, STI and STII, have been found. Both STs are synthesized as precursor proteins and are then converted to the active forms with intramolecular disulfide bonds after being released into the periplasm. The active STs are finally translocated across the outer membrane through a tunnel made by TolC. However, it is unclear how the active STs formed in the periplasm are led to the TolC channel. Several transporters in the inner membrane and their periplasmic accessory proteins are known to combine with TolC and form a tripartite transport system. We therefore expect such transporters to also act as a partner with TolC to export STs from the periplasm to the exterior. In this study, we carried out pulse-chase experiments using E. coli BL21(DE3) mutants in which various transporter genes (acrAB, acrEF, emrAB, emrKY, mdtEF, macAB, and yojHI) had been knocked out and analyzed the secretion of STs in those strains. The results revealed that the extracellular secretion of STII was largely decreased in the macAB mutant and the toxin molecules were accumulated in the periplasm, although the secretion of STI was not affected in any mutant used in this study. The periplasmic stagnation of STII in the macAB mutant was restored by the introduction of pACYC184, containing the macAB gene, into the cell. These results indicate that MacAB, an ATP-binding cassette transporter of MacB and its accessory protein, MacA, participates in the translocation of STII from the periplasm to the exterior. Since it has been reported that MacAB cooperates with TolC, we propose that the MacAB-TolC system captures the periplasmic STII molecules and exports the toxin molecules to the exterior.  相似文献   

9.
When Legionella pneumophila grows on agar plates, it secretes a surfactant that promotes flagellum- and pilus-independent "sliding" motility. We isolated three mutants that were defective for surfactant. The first two had mutations in genes predicted to encode cytoplasmic enzymes involved in lipid metabolism. These genes mapped to two adjacent operons that we designated bbcABCDEF and bbcGHIJK. Backcrossing and complementation confirmed the importance of the bbc genes and suggested that the Legionella surfactant is lipid containing. The third mutant had an insertion in tolC. TolC is the outer membrane part of various trimolecular complexes involved in multidrug efflux and type I protein secretion. Complementation of the tolC mutant restored sliding motility. Mutants defective for an inner membrane partner of TolC also lacked a surfactant, confirming that TolC promotes surfactant secretion. L. pneumophila (lspF) mutants lacking type II protein secretion (T2S) are also impaired for a surfactant. When the tolC and lspF mutants were grown next to each other, the lsp mutant secreted surfactant, suggesting that TolC and T2S conjoin to mediate surfactant secretion, with one being the conduit for surfactant export and the other the exporter of a molecule that is required for induction or maturation of surfactant synthesis/secretion. Although the surfactant was not required for the extracellular growth, intracellular infection, and intrapulmonary survival of L. pneumophila, it exhibited antimicrobial activity toward seven other species of Legionella but not toward various non-Legionella species. These data suggest that the surfactant provides L. pneumophila with a selective advantage over other legionellae in the natural environment.  相似文献   

10.
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.  相似文献   

11.
Sinorhizobium meliloti is capable of establishing a symbiotic nitrogen fixation relationship with Medicago sativa. During this process, it must cope with diverse environments and has evolved different types of transport systems that help its propagation in the plant roots. TolC protein family members are the outer-membrane components of several transport systems involved in the export of diverse molecules, playing an important role in bacterial survival. In this work, we have characterized the protein TolC from S. meliloti 2011. An insertional mutation in the tolC gene strongly affected the resistance phenotype to antimicrobial agents and induced higher susceptibility to osmotic and oxidative stresses. Immunodetection experiments and comparison of the extracellular proteins present in the supernatant of the wild-type versus tolC mutant strains showed that the calcium-binding protein ExpE1, the endoglycanase ExsH, and the product of open reading frame SMc04171, a putative hemolysin-type calcium-binding protein, are secreted by a TolC-dependent secretion system. In the absence of TolC, neither succinoglycan nor galactoglucan were detected in the culture supernatant. Moreover, S. meliloti tolC mutant induced a reduced number of nonfixing nitrogen nodules in M. sativa roots. Taken together, our results confirm the importance of TolC in protein secretion, exopolysaccharide biosynthesis, antimicrobials resistance, and symbiosis.  相似文献   

12.
Cyanobacteria were the first organisms ever to perform oxygenic photosynthesis and still significantly contribute to primary production on a global scale. To assure the proper functioning of their primary metabolism and cell homeostasis, cyanobacteria must rely on efficient transport systems to cross their multilayered cell envelope. However, cyanobacterial secretion mechanisms remain largely unknown. Here, we report on the identification of 11 putative inner membrane translocase components of TolC‐mediated secretion in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Gene‐inactivation of each of the candidate genes followed by a comprehensive phenotypic characterization allowed to link specific protein components to the processes of protein export (as part of the type I secretion system) and drug efflux (part of the resistance‐division‐nodulation efflux pumps). In addition, mutants in genes sll0141, sll0180 and slr0369 exhibited alterations in pilin glycosylation, but pili structures could still be observed by transmission electron microscopy. By studying the release of outer membrane vesicles (OMVs), an alternative secretion route, on mutants with impaired secretory functions we suggest that the hyper‐vesiculating phenotype of the TolC‐deficient mutant is related to cell envelope stress management. Altogether, these findings highlight how both classical (TolC‐mediated) and nonclassical (OMVs‐mediated) secretion systems are crucial for cyanobacterial cell homeostasis.  相似文献   

13.
Chunnel vision. Export and efflux through bacterial channel-tunnels   总被引:9,自引:0,他引:9  
The Escherichia coli TolC protein is central to toxin export and drug efflux across the inner and outer cell membranes and the intervening periplasmic space. The crystal structure has revealed that TolC assembles into a remarkable α-helical trans-periplasmic cylinder (tunnel) embedded in the outer membrane by a contiguous β-barrel (channel), so providing a large duct open to the outside environment. The channel-tunnel structure is conserved in TolC homologues throughout Gram-negative bacteria, and it is envisaged that they are recruited and opened, through a common mechanism, by substrate-specific inner-membrane complexes.  相似文献   

14.
The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.  相似文献   

15.
Multidrug-resistant strains of Vibrio cholerae (the causative agent of the diarrhoeal disease cholera) have recently been described. In an attempt to identify a homologue of the Escherichia coli TolC in V . cholerae , we isolated a DNA fragment (pVC) that enabled an E . coli tolC mutant to grow in the presence of 0.05% deoxycholate (DOC). However, other TolC defects were not complemented. Nucleotide sequence analysis of this fragment revealed the presence of two open reading frames (ORF1 and ORF2) separated by 9 bp and encoding 42.4 and 55.8 kDa proteins respectively. The translational products of these two ORFs correlated closely with the molecular weights of the predicted proteins. The deduced amino acid sequences of ORF1 and ORF2 showed a high degree of similarity with conserved regions of the E . coli efflux pump proteins, EmrA and EmrB. The presence of pVC2 within the E . coli efflux pump mutants defective in either the emrAB or the acrAB genes provided the mutants with resistance against several antibiotics. A V . cholerae isogenic mutant defective in ORF2 was constructed by gene replacement. Characterization of this mutant has shown it to be more sensitive to CCCP, PMA, PCP, nalidixic acid and DOC than the parent strain. These results suggest that ORF1 and ORF2 constitute an operon encoding two components of a putative multidrug resistance pump in V . cholerae . In addition, the presence of both structural and functional similarities between VceAB and EmrAB suggests that VceAB is a homologue of EmrAB.  相似文献   

16.
The crystal structure of TolC from Escherichia coli was recently determined to 2.1-A resolution and shows a unique type of channel architecture: a 12-stranded beta-barrel spans the outer membrane and is attached to a long alpha-helical channel that penetrates far into the periplasm. The structure suggests a mechanism for its role in secretion of proteins and in efflux of toxic small molecules. The TolC export pathway is compared with several import pathways of gram-negative bacteria where the outer membrane protein structures are also known.  相似文献   

17.
The major Escherichia coli multidrug efflux pump AcrAB-TolC expels a wide range of antibacterial agents. Using in vivo cross-linking, we show for the first time that the antiporter AcrB and the adaptor AcrA, which form a translocase in the inner membrane, interact with the outer membrane TolC exit duct to form a contiguous proteinaceous complex spanning the bacterial cell envelope. Assembly of the pump appeared to be constitutive, occurring in the presence and absence of drug efflux substrate. This contrasts with substrate-induced assembly of the closely related TolC-dependent protein export machinery, possibly reflecting different assembly dynamics and degrees of substrate responsiveness in the two systems. TolC could be cross-linked independently to AcrB, showing that their large periplasmic domains are in close proximity. However, isothermal titration calorimetry detected no interaction between the purified AcrB and TolC proteins, suggesting that the adaptor protein is required for their stable association in vivo. Confirming this view, AcrA could be cross-linked independently to AcrB and TolC in vivo, and calorimetry demonstrated energetically favourable interactions of AcrA with both AcrB and TolC proteins. AcrB was bound by a polypeptide spanning the C-terminal half of AcrA, but binding to TolC required interaction of N- and C-terminal polypeptides spanning the lipoyl-like domains predicted to present the intervening coiled-coil to the periplasmic coils of TolC. These in vivo and in vitro analyses establish the central role of the AcrA adaptor in drug-independent assembly of the tripartite drug efflux pump, specifically in coupling the inner membrane transporter and the outer membrane exit duct.  相似文献   

18.
Bacteria have membrane-spanning efflux pumps to secrete toxic compounds ranging from heavy metal ions to organic chemicals, including antibiotic drugs. The overall architecture of these efflux pumps is highly conserved: with an inner membrane energy-transducing subunit coupled via an adaptor protein to an outer membrane conduit subunit that enables toxic compounds to be expelled into the environment. Here, we map the distribution of efflux pumps across bacterial lineages to show these proteins are more widespread than previously recognised. Complex phylogenetics support the concept that gene cassettes encoding the subunits for these pumps are commonly acquired by horizontal gene transfer. Using TolC as a model protein, we demonstrate that assembly of conduit subunits into the outer membrane uses the chaperone TAM to physically organise the membrane-embedded staves of the conduit subunit of the efflux pump. The characteristics of this assembly pathway have impact for the acquisition of efflux pumps across bacterial species and for the development of new antimicrobial compounds that inhibit efflux pump function.

A crosslinking study reveals novel insights into how the chaperone TAM helps Gram-negative bacteria insert the drug efflux pump subunit TolC into their outer membrane. Bioinformatic analyses show that TolC-like proteins can be found in all LPS-containing bacteria, but also in some monodermic Firmicutes.  相似文献   

19.
This study describes the isolation and characterization of a unique class of TolC mutants that, under steady-state growth conditions, secreted normal levels of largely inactive alpha-hemolysin. Unlike the reduced activity in the culture supernatants, the cell-associated hemolytic activity in these mutants was identical to that in the parental strain, thus reflecting a normal intracellular toxin activation event. Treatment of the secreted toxin with guanidine hydrochloride significantly restored cytolytic activity, suggesting that the diminished activity may have been due to the aggregation or misfolding of the toxin molecules. Consistent with this notion, sedimentation and filtration analyses showed that alpha-hemolysin secreted from the mutant strain has a mass greater than that secreted from the parental strain. Experiments designed to monitor the time course of alpha-hemolysin release showed delayed appearance of toxin in the culture supernatant of the mutant strain, thus indicating a possible defect in alpha-hemolysin translocation or release. Eight different TolC substitutions displaying this toxin secretion defect were scattered throughout the protein, of which six localized in the periplasmically exposed alpha-helical domain, while the remaining two mapped within the outer membrane-embedded beta-barrel domain of TolC. A plausible model for the secretion of inactive alpha-hemolysin in these TolC mutants is discussed in the context of the recently determined three-dimensional structure of TolC.  相似文献   

20.
Leukotoxin (LtxA) is a protein toxin that is secreted from the oral bacterium, Aggregatibacter actinomycetemcomitans. LtxA targets specifically the β(2) integrin, leukocyte function antigen-1 (LFA-1) on white blood cells (WBCs) and causes cell death. LtxA preferentially targets activated WBCs and is being developed as a therapeutic agent for the treatment of WBC diseases such as hematologic malignancies and autoimmune/inflammatory diseases. However, the mechanism by which interaction between LtxA and LFA-1 results in cell death is not well understood. Furthermore, how LtxA preferentially recognizes activated WBCs is not known. We show here that LtxA interacts specifically with LFA-1 in the active (exposed) conformation. In THP-1 monocytes, LtxA caused rapid activation of caspases, but LtxA could overcome the inhibition of caspases and still intoxicate. In contrast, inhibiting the vesicular trafficking pathway or cathepsin D release from the lysosome resulted in significant inhibition of LtxA-mediated cytotoxicity, indicating a more potent, lysosomal mediated cell death pathway. LtxA caused rapid disruption of the lysosomal membrane and release of lysosomal contents into the cytosol. Binding of LtxA to LFA-1 resulted in the internalization of both LtxA and LFA-1, with LtxA localizing specifically to the lysosomal compartment. To our knowledge, LtxA represents the first bacterial toxin shown to localize to the lysosome where it induces rapid cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号