首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was shown in comparative experiments on guinea pigs that the oral method of immunization with plague vaccine was much less effective than the inhalation and subcutaneous. Guinea pigs were found to be a poor model for studying the efficacy of oral immunization with dry live plague vaccine rehydrated before use: with the use of this preparation the animals were 46 times less resistant to aerosol plague infection than in application of strain EB cultured in agar.  相似文献   

2.
目的通过由提取的鼠疫F1抗原和重组鼠疫V(rV)抗原组成的鼠疫候选疫苗免疫豚鼠,对其免疫效果进行评价。方法将豚鼠随机分成5个试验组,在免疫后不同时间点采血进行抗体检测、MTT法淋巴细胞增殖试验以及皮肤迟发型超敏反应(DTH)检测。结果抗体检测结果显示,双组分鼠疫候选疫苗能诱导较强的体液免疫应答;MTT细胞增殖结果显示,脾脏淋巴细胞特异性增殖不明显;中剂量组、高剂量组针对F1和rV抗原DTH阳转率均为100%。结论双组分鼠疫候选疫苗能诱导豚鼠体液免疫和细胞免疫应答,该疫苗有希望成为我国新一代鼠疫疫苗。  相似文献   

3.
Vaccines against bioterrorism agents offer the prospect of providing high levels of protection against airborne pathogens. However, the diversity of the bioterrorism threat means that it may be necessary to use several vaccines simultaneously. In this study we have investigated whether there are changes to the protective immune response to a recombinant sub-unit plague vaccine when it is co-administered with other sub-unit or live attenuated vaccines. Our results indicate that the co-administration of these vaccines did not influence the protection afforded by the plague vaccine. However, the co-administration of the plague sub-unit vaccine with a live vaccine resulted in markedly increased levels of IgG2a subclass antibodies, and markedly reduced levels of IgG1 subclass antibodies, to the plague sub-unit vaccine. This finding might have implications when considering the co-administration of other vaccine combinations.  相似文献   

4.
目的建立ELISA双抗体夹心法,测定重组毒力因子rV抗原含量。方法采用杂交瘤技术,制备鼠疫菌rV抗原的鼠单克隆抗体,对抗原表位和单抗特异性进行分析及鉴定,建立ELISA双抗体夹心法,并验证方法的专属性、准确性、精密度和线性范围。结果成功组建了鼠疫菌rV抗原诊断试剂,灵敏度最低检测值为10 ng/mL。结论该方法可用于免疫学检测鼠疫组分疫苗原液rV抗原含量及制备过程中抗原活性,是鼠疫组分疫苗制备中一种重要的质量控制手段,也为进一步开发鼠疫诊断试剂盒及其他相关研究奠定了基础。  相似文献   

5.
A search for cellular components responsible for autoagglutination (AA) in broth and salt solutions of Hms- cells of the plague agent Yersinia pestis was performed. The AA- mutants were obtained using vaccine strain Y. pestis EV76 derivative containing one species-specific plasmid pYP. The mutants were shown to differ from the parent strain by the decreased surface hydrophobicity, insensitivity to plague diagnostic L-413c bacteriophage and negative haemagglutination reaction with antibodies to F1 capsular substance of the plague agent. The mutants did not differ from the parent strain by electrophoretic mobility and immunochemical activity of LPS but were characterized by the absence of a 17 kDa protein on the cell surface. The AA+ cells that lost this protein after weak alkali extraction were less hydrophobic and failed to express AA in 0.5 M ammonium sulfate. After the extraction, the cells lost the ability to neutralize L-413c and to react with the anti-F1 antibodies, while both activities as well as 17 kDa protein were detected in the extracts. Thus, the 17 kDa protein is suggested to be a hydrophobic surface antigen which acts as a receptor of the L-413c bacteriophage and represents an AA factor of Hms- cells of Y. pestis.  相似文献   

6.
Mammalian seminal plasma contains among others, two major families of proteins, namely spermadhesins and those proteins that contain fibronectin type II domains. Spermadhesins are the major proteins of boar and stallion seminal plasma and homologous proteins have been identified in the bull. These proteins appear to be involved in capacitation and sperm-egg interaction. In bovine seminal plasma, proteins containing fibronectin type II domains are the major proteins and are designated BSP proteins. These proteins play a role in sperm capacitation. In this study, we present the isolation and characterization of the major proteins of ram seminal plasma. Precipitated proteins from Suffolk ram seminal plasma were loaded onto a gelatin-Agarose column. The unadsorbed (fraction A) and retarded proteins (fraction B) were removed by washing the column with phosphate buffered-saline and the adsorbed proteins (fraction C) were eluted with 5 M urea. SDS-PAGE of fraction B indicated the presence of a 15.5 kDa protein, which is the major protein of ram seminal plasma (approximately 45% of total protein by weight) and was identified as a spermadhesin by N-terminal sequencing. SDS-PAGE analysis of fraction C revealed the presence of four proteins, which represented approximately 20% of total ram seminal plasma proteins by weight, and were identified as proteins of the BSP family and named RSP proteins. These RSP proteins were designated RSP-15 kDa, RSP-16 kDa, RSP-22 kDa, and RSP-24 kDa. Only RSP-15 kDa and -16 kDa proteins cross-reacted with antibodies against BSP proteins. Ram spermadhesin and RSP proteins interact with heparin but only RSP proteins bind to hen's egg yolk low-density lipoprotein. In conclusion, spermadhesin is the major protein of ram seminal plasma and other major proteins belong to the BSP protein family.  相似文献   

7.
鼠疫菌F1抗原是鼠疫亚单位新疫苗最重要的候选抗原,对其性质的充分认识,将有助于抗原制造工艺和新疫苗的开发。F1抗原的性质研究包括:微观结构,一级核苷酸、氨基酸序列,二级结构,高分子聚集形态,以及F1抗原的理化性质。  相似文献   

8.

Background

No efficient vaccine against plague is currently available. We previously showed that a genetically attenuated Yersinia pseudotuberculosis producing the Yersinia pestis F1 antigen was an efficient live oral vaccine against pneumonic plague. This candidate vaccine however failed to confer full protection against bubonic plague and did not produce F1 stably.

Methodology/Principal Findings

The caf operon encoding F1 was inserted into the chromosome of a genetically attenuated Y. pseudotuberculosis, yielding the VTnF1 strain, which stably produced the F1 capsule. Given orally to mice, VTnF1 persisted two weeks in the mouse gut and induced a high humoral response targeting both F1 and other Y. pestis antigens. The strong cellular response elicited was directed mostly against targets other than F1, but also against F1. It involved cells with a Th1—Th17 effector profile, producing IFNγ, IL-17, and IL-10. A single oral dose (108 CFU) of VTnF1 conferred 100% protection against pneumonic plague using a high-dose challenge (3,300 LD50) caused by the fully virulent Y. pestis CO92. Moreover, vaccination protected 100% of mice from bubonic plague caused by a challenge with 100 LD50 Y. pestis and 93% against a high-dose infection (10,000 LD50). Protection involved fast-acting mechanisms controlling Y. pestis spread out of the injection site, and the protection provided was long-lasting, with 93% and 50% of mice surviving bubonic and pneumonic plague respectively, six months after vaccination. Vaccinated mice also survived bubonic and pneumonic plague caused by a high-dose of non-encapsulated (F1-) Y. pestis.

Significance

VTnF1 is an easy-to-produce, genetically stable plague vaccine candidate, providing a highly efficient and long-lasting protection against both bubonic and pneumonic plague caused by wild type or un-encapsulated (F1-negative) Y. pestis. To our knowledge, VTnF1 is the only plague vaccine ever reported that could provide high and durable protection against the two forms of plague after a single oral administration.  相似文献   

9.
Pneumonic plague is a highly virulent infectious disease with 100% mortality rate, and its causative organism Yersinia pestis poses a serious threat for deliberate use as a bioterror agent. Currently, there is no FDA approved vaccine against plague. The polymeric bacterial capsular protein F1, a key component of the currently tested bivalent subunit vaccine consisting, in addition, of low calcium response V antigen, has high propensity to aggregate, thus affecting its purification and vaccine efficacy. We used two basic approaches, structure-based immunogen design and phage T4 nanoparticle delivery, to construct new plague vaccines that provided complete protection against pneumonic plague. The NH2-terminal β-strand of F1 was transplanted to the COOH-terminus and the sequence flanking the β-strand was duplicated to eliminate polymerization but to retain the T cell epitopes. The mutated F1 was fused to the V antigen, a key virulence factor that forms the tip of the type three secretion system (T3SS). The F1mut-V protein showed a dramatic switch in solubility, producing a completely soluble monomer. The F1mut-V was then arrayed on phage T4 nanoparticle via the small outer capsid protein, Soc. The F1mut-V monomer was robustly immunogenic and the T4-decorated F1mut-V without any adjuvant induced balanced TH1 and TH2 responses in mice. Inclusion of an oligomerization-deficient YscF, another component of the T3SS, showed a slight enhancement in the potency of F1-V vaccine, while deletion of the putative immunomodulatory sequence of the V antigen did not improve the vaccine efficacy. Both the soluble (purified F1mut-V mixed with alhydrogel) and T4 decorated F1mut-V (no adjuvant) provided 100% protection to mice and rats against pneumonic plague evoked by high doses of Y. pestis CO92. These novel platforms might lead to efficacious and easily manufacturable next generation plague vaccines.  相似文献   

10.
Yersinia pestis, the causative agent of bubonic and pneumonic plague, is an extremely virulent bacterium but there are currently no approved vaccines for protection against this organism. Plants represent an economical and safer alternative to fermentation-based expression systems for the production of therapeutic proteins. The recombinant plague vaccine candidates produced in plants are based on the two most immunogenic antigens of Y. pestis: the fraction-1 capsular antigen (F1) and the low calcium response virulent antigen (V) either in combination or as a fusion protein (F1–V). These antigens have been expressed in plants using all three known possible strategies: nuclear transformation, chloroplast transformation and plant-virus-based expression vectors. These plant-derived plague vaccine candidates were successfully tested in animal models using parenteral, oral, or prime/boost immunization regimens. This review focuses on the recent research accomplishments towards the development of safe and effective pneumonic and bubonic plague vaccines using plants as bioreactors.  相似文献   

11.

Background  

Yersinia pestis, the causative agent of plague, is a pathogen with a tremendous ability to cause harm and panic in populations. Due to the severity of plague and its potential for use as a bioweapon, better preventatives and therapeutics for plague are desirable. Subunit vaccines directed against the F1 capsular antigen and the V antigen (also known as LcrV) of Y. pestis are under development. However, these new vaccine formulations have some possible limitations. The F1 antigen is not required for full virulence of Y. pestis and LcrV has a demonstrated immunosuppressive effect. These limitations could damper the ability of F1/LcrV based vaccines to protect against F1-minus Y. pestis strains and could lead to a high rate of undesired side effects in vaccinated populations. For these reasons, the use of other antigens in a plague vaccine formulation may be advantageous.  相似文献   

12.
Plague impacts prairie dogs (Cynomys spp.), the endangered black-footed ferret (Mustela nigripes) and other sensitive wildlife species. We compared efficacy of prophylactic treatments (burrow dusting with deltamethrin or oral vaccination with recombinant “sylvatic plague vaccine” [RCN-F1/V307]) to placebo treatment in black-tailed prairie dog (C. ludovicianus) colonies. Between 2013 and 2015, we measured prairie dog apparent survival, burrow activity and flea abundance on triplicate plots (“blocks”) receiving dust, vaccine or placebo treatment. Epizootic plague affected all three blocks but emerged asynchronously. Dust plots had fewer fleas per burrow (P < 0.0001), and prairie dogs captured on dust plots had fewer fleas (P < 0.0001) than those on vaccine or placebo plots. Burrow activity and prairie dog density declined sharply in placebo plots when epizootic plague emerged. Patterns in corresponding dust and vaccine plots were less consistent and appeared strongly influenced by timing of treatment applications relative to plague emergence. Deltamethrin or oral vaccination enhanced apparent survival within two blocks. Applying insecticide or vaccine prior to epizootic emergence blunted effects of plague on prairie dog survival and abundance, thereby preventing colony collapse. Successful plague mitigation will likely entail strategic combined uses of burrow dusting and oral vaccination within large colonies or colony complexes.  相似文献   

13.
Yersinia pestis is the etiological agent of pneumonic and bubonic plague. As the currently licensed vaccines for plague have their own limitations, there is a need for a rational and more effective form of a subunit vaccine to combat both forms of the disease. Newer methods of antigen delivery coupled with adjuvant offer an alternative approach toward a plague vaccine. In order to develop a new generation vaccine against plague, we chose an immunodominant, outer membrane capsular protein, F1 of Y. pestis. The immunogenicity of the peptide sequences, predicted to possess B (three sequences, B1, B2 and B3) and T (two sequences, T1 and T2) cell determinants, was studied in a murine model with different genetic backgrounds, using alhydrogel and liposomes as delivery vehicles. All the peptide sequences are immunogenic in all mouse strains and showed primary and secondary immune response. B2 peptide was found to be most immunogenic, followed by B1 and B3 peptides. Chimeras made between B and T structures proved highly immunogenic and the antibody levels are comparable with native F1 antigen, thereby proving that T1 and T2 are helper sequences. Interestingly, the liposome mode of immunization was found to be more immunogenic and generated higher affinity antibodies than the alum-based preparation. Immunization using a mixture of all the peptides further proved B2 to be immunodominant. The IgG isotype profile showed predominance of IgG1, IgG2b followed by IgG2a for all the formulations irrespective of mode of antigen delivery. Lymphocyte proliferation of spleen cells primed in vivo with peptides, B-T conjugates and F1 antigen followed by in vitro stimulation with these antigens in soluble (medium) and particulate (liposome) form, showed dose-dependent stimulation of T cells, while B-T constructs showed a higher stimulation index, comparable to F1 antigen. The liposome mode of antigen presentation showed higher lymphoproliferation of spleen cells. Of all the peptides tested, T1 and T2 sequences showed the highest stimulation indices. The pattern of cytokine levels was in the following order: interferon-gamma>interleukin-2>interleukin-4. In vivo protective studies of the B-T conjugates revealed that B1T1 and a mixture of conjugates showed a survival rate of 10 days. Thus, the study highlights the importance of B and T cell epitopes as peptide-based immunogens, being a serious alternative for plague vaccine.  相似文献   

14.
The experiments in guinea pigs showed that the immunogenic properties of plague vaccine strain EV, line NIIEG, freeze-dried in 1947 and stored under vacuum without animalization, remained unchanged for 30 years. The subcultures prepared from this train showed, after three passages in guinea pigs, good immunogenic properties which preserved for 6--10 years (the term of observation). After 30-years storage the stock culture of strain EV, line NIIEG, can be used for the preparation of NIIS live plague vaccine.  相似文献   

15.
Plague, a disease caused by Yersinia pestis introduced into North America about 100?years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.  相似文献   

16.
The growth of plague bacteria may be limited by the level of iron concentration in the nutrient medium. The virulent strains of the plague microbe possess the more pronounced mechanism of iron assimilation as compared to the vaccine strain. The iron ions are extracted by the virulent and vaccine strains only under the cell surface contact with the iron-saturated transferrin. The iron-sorbing function is peculiar to the plague microbe cell walls which is pronounced more strongly in the virulent strains.  相似文献   

17.
The endangered black-footed ferret (Mustela nigripes) is affected by plague, caused by Yersinia pestis, both directly, as a cause of mortality, and indirectly, because of the impacts of plague on its prairie dog (Cynomys spp.) prey base. Recent developments in vaccines and vaccine delivery have raised the possibility of plague control in prairie dog populations, thereby protecting ferret populations. A large-scale experimental investigation across the western US shows that sylvatic plague vaccine delivered in oral baits can increase prairie dog survival. In northern Colorado, an examination of the efficacy of insecticides to control fleas and plague vaccine shows that timing and method of plague control is important, with different implications for long-term and large-scale management of Y. pestis delivery. In both cases, the studies show that ambitious field-work and cross-sectoral collaboration can provide potential solutions to difficult issues of wildlife management, conservation and disease ecology.  相似文献   

18.
鼠疫亚单位疫苗研究进展   总被引:4,自引:0,他引:4  
鼠疫 ,由于其强烈的传染性和极高的致死率 ,使得人们在应对它时 ,必须侧重于早期的防治。传统疫苗存在安全隐患 ,且存在效率低 ,接种反应率高以及不能保护人体免受肺鼠疫侵害等缺陷。近年来生物技术的迅速发展 ,为开展对鼠疫传统疫苗的改进和新疫苗的研究创造了条件 ,而这些研究当中 ,成果最为丰富的当属亚单位疫苗。目前鼠疫亚单位疫苗的研究大多围绕对鼠疫杆菌免疫原性起决定作用的两种主要抗原成分 (F1抗原和V抗原 )展开 ,按此研究方向浅谈其研究进展。  相似文献   

19.
A new improved sub-unit vaccine for plague: the basis of protection   总被引:14,自引:1,他引:13  
Abstract In this study, we have determined the limit of protection achievable by immunisation with sub-units of Yersinia pestis against the development of plague in an experimental animal model. Co-immunisation with the purified culture-derived F1 and the recombinant V sub-units afforded a greater level of protection than with either sub-unit alone. The protection given by the combined sub-units was several orders of magnitude greater than that afforded by the whole cell killed (Cutter USP) vaccine and was equivalent to that achieved by vaccination with EV76, the live attenuated Y. pestis vaccine strain. However, the combined sub-unit vaccine has clear advantages over the live vaccine in terms of safety of use and absence of side-effects.  相似文献   

20.
Mice immunization with reference vaccine at the early stage of plague infection provided animals survival and prolonged mean survival period up to 2-5 days. Ciprofloxacin, ofloxacin and pefloxacin prevents development of post vaccine immunity at white mice, immunized by reference vaccine strain EV. Nalidixic acid and norfloxacin effect on post vaccine immunity was lower. Use of immunogenic strain EV Nafr (resistant to nalidixic acid and fluoroquinolones) provided antiplague immunity formation at the background of fluoroquinolones prophylaxis. Ciprofloxacin, ofloxacin and pefloxacin used for plague prophylaxis at white mice infected with Yersinia pestis (about 1000 LD50) inhibited postinfective immunity development. Nalidixic acid and norfloxacin didn't demonstrate such effect. Urgent (fluoroquinolones) and specific (EV Nalr) combined prophylaxis was evaluated as more effective for a 5-day period and provided the development of antiplague immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号