首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serum-free culture of murine primordial germ cells and embryonic germ cells   总被引:7,自引:0,他引:7  
Horii T  Nagao Y  Tokunaga T  Imai H 《Theriogenology》2003,59(5-6):1257-1264
Fetal calf serum (FCS) has usually been used for culture of embryonic stem (ES) cell as a component of the culture medium. However, FCS contains undefined factors, which promote cell proliferation and occasionally stimulate differentiation of ES cells. Recently, a chemically-defined serum replacement, Knockout Serum Replacement (KSR), was developed to maintain ES cells in an undifferentiated state. In this experiment, we examined the effects of KSR on the growth and differentiation of primordial germ cells (PGCs) and embryonic germ (EG) cells. PGCs were collected 8.5 days postcoitum (dpc) from B6D2F1 (C57BL/6JxDBA/2J) female mice mated with B6D2F1 males. Most of the PGCs that were cultured in FCS-supplemented medium (FCS medium) had alkaline phosphatase (AP) activity and acquired a fibroblast cell shape. In contrast, PGCs in KSR-supplemented medium (KSR medium) proliferated, maintaining round and stem cell-like morphology. In addition, EG cells were established more easily from PGCs cultured in KSR medium than from PGCs cultured in FCS medium. The percentage of undifferentiated colonies of EG cells was significantly higher in KSR medium than in FCS medium. The germ line chimera was also produced from EG cells established in KSR medium. These results suggest that KSR can be used for sustaining an undifferentiated state of PGCs and EG cells in vitro.  相似文献   

2.
Sendai virus (SeV) vectors can introduce foreign genes efficiently and stably into primate embryonic stem (ES) cells. For the application of these cells, the control of transgene expression is important. Cynomolgus ES cells transduced with a SeV vector expressing the green fluorescent protein (GFP) gene were propagated in Knockout serum replacement (KSR)-supplemented medium, used widely for the serum-free culture of ES cells, and growth and transgene expression were evaluated. The SeV vector-mediated GFP expression was suppressed in the KSR-supplemented medium, although it was stable in regular fetal bovine serum (FBS)-supplemented medium. Propagation in the KSR-supplemented medium eventually resulted in a complete suppression of GFP expression and eradication of the SeV genome. The inhibitory effect of KSR on the transduction was attributable to the positive selection of untransduced ES cells in addition to the removal of the SeV vector from transduced cells. KSR also reduced the efficiency of the transduction. SeV vector-mediated transgene expression in ES cells was suppressed in the KSR-supplemented medium. Although the suppression is limited in specified cells such as ES cells, these findings will help elucidate how to control transgene expression.  相似文献   

3.
4.
以小鼠胚胎成纤维细胞(MEF)为饲养层, 研究了用Knockout血清替代品(Knockout serum replacement, KSR)代替胚胎干细胞(Embryonic stem cells, ES cell)培养液中的胎牛血清(FBS)和向含KSR的基础培养液中添加40%的小鼠ES细胞条件培养液(ES cell conditioned medium, ESCCM)对绵羊类ES细胞分离、克隆效率的影响。发现使用含FBS的基础培养液最多可以把绵羊类ES细胞传至3代, 而使用KSR和添加ESCCM能促进绵羊类ES细胞的分离和克隆, 所获得的类ES细胞分别可稳定传至第5和8代。同时对类ES细胞进行核型分析、AKP染色及体外分化能力检测, 证实所分离的类ES细胞符合ES细胞的主要特征。由此认为, 与FBS相比KSR更加适于绵羊类ES细胞的分离与培养; 而小鼠ES细胞在生长过程中可能分泌某些重要的细胞因子, 从而达到促进绵羊ES细胞增值的作用。  相似文献   

5.
《Reproductive biology》2022,22(1):100613
This study was conducted to investigate the main and interactive effects of two methods of culture medium preparation [base medium vs granulosa cells conditioned medium (GCCM)] and two nutrient supplements [fetal bovine serum (FBS) vs knock-out serum replacement (KSR)] on formation and activation of primordial follicles and gene expression of corresponding factors during a seven-day culture period. One-day-old mouse ovaries were cultured with four different culture media including base medium containing FBS (BMF), base medium containing KSR (BMK), GCCM prepared with FBS (CMF) and GCCM prepared with KSR (CMK), and samples for histological and molecular assessments were collected on days 3 and 7 of culture. Further, steroid content of media was measured. Histological examination showed that KSR enhanced follicular formation and the number of follicular count was greater in BMK than CMF group (P < 0.05). Moreover, follicular activation was higher in CMK group than BMK and CMF groups (P < 0.05). Additionally, RT-PCR revealed that KSR upregulated Gdf9 gene expression (P < 0.05), while GCCM diminished expression of Gdf9, Bmp15, Notch2, Figla and Foxl2 (P < 0.05). GCCM decreased expression of Pten and increased expression of Pi3k (P < 0.05). Besides, hormonal assays indicated higher concentrations of estradiol and progesterone in GCCM compared with base media (P < 0.0001). In conclusion, the present study showed base medium containing KSR could serve as a proper medium for in vitro culture of neonatal mouse ovary since it could better support formation of primordial follicles. Yet BMK did not promote follicular activation as well as GCCM prepared with KSR did, and therefore, requires modifications.  相似文献   

6.
7.
Embryonic germ cells (EGC) are cultured pluripotent cells derived from primordial germ cells (PGC). This study explored the possibility of establishing porcine EGC from domestic breeds and Yucatan mini pigs using embryos at Days 17-24 of gestation. In vitro culture of PGC from both pooled and individual embryos resulted in the successful derivation of putative EGC lines from Days 20 to 24 with high efficiency. RT-PCR showed that gene expression among all 31 obtained cell lines was very similar, and only minor changes were detected during in vitro passaging of the cells. Genome-wide RNA-Seq expression profiling showed no expression of the core pluripotency markers OCT4, SOX2, and NANOG, although most other pluripotency genes were expressed at levels comparable to those of mouse embryonic stem cells (ESC). Moreover, germ-specific genes such as BLIMP1 retained their expression. Functional annotation clustering of the gene expression pattern of the putative EGC suggests partial differentiation toward endo/mesodermal lineages. The putative EGC were able to form embryoid bodies in suspension culture and to differentiate into epithelial-like, mesenchymal-like, and neuronal-like cells. However, their injection into immunodeficient mice did not result in teratoma formation. Our results suggest that the PGC-derived cells described in this study are EGC-like, but seem to be multipotent rather than pluripotent cells. Nevertheless, the thorough characterization of these cells in this study, and especially the identification of various genes and pathways involved in pluripotency by RNA-Seq, will serve as a rich resource for further derivation of porcine EGC.  相似文献   

8.
The main aim of the present study was to investigate the effect of sperm freezing medium dilution ratio (1:1, 1:2, and 1:5 v/v), two cryoprotectants: dimethyl sulphoxide (Me(2)SO) and methanol (MeOH), and the addition of foetal bovine serum (FBS) on the cryopreservation of European eel sperm. The effect of these factors was evaluated comparing post-thawing viability with fluorescent staining (Hoechst bisbenzimide 33258) and the spermatozoa head morphometry, determined with computer-assisted morphology analysis (ASMA). The 1:5 (v/v) dilution ratio resulted in a lower viability in comparison with 1:1 and 1:2 (52.8+/-2.3% vs. 67.4+/-2.3% and 65.1+/-2.3%, respectively, p=0.0001), but without effects on the head morphology. Although the viability was not significantly different between Me(2)SO and MeOH (60.4+/-1.9 vs. 63.2+/-1.9%, respectively, p=0.305), a decrease of spermatozoa head area and perimeter was found when spermatozoa were frozen with methanol (6.19+/-0.01 vs. 6.36+/-0.01 microm(2) and 17.28+/-0.05 vs. 17.49+/-0.05 microm, for area and perimeter and MeOH and Me(2)SO, respectively, p=0.0001). Finally, a higher viability (75.1+/-1.7 vs. 48.5+/-1.7, with or without FBS, respectively, p=0.0001) and higher spermatozoa head size (6.40+/-0.01 vs. 6.15+/-0.01microm(2) and 17.88+/-0.05 vs. 16.89+/-0.05 microm, for area and perimeter, with or without FBS, respectively, p=0.0001) were found when cells were frozen-thawed in freezing media supplemented with FBS. Based on the above findings, dilution ratios lower than 1:5 (v/v) and the addition of serum improved the viability results after cryopreservation. Future studies are required in order to understand the spermatozoa membrane interchange mechanisms in response to the changes in spermatozoa head size caused by cryoprotectants and freezing media supplements.  相似文献   

9.
Optimization of in vitro culture system for the expansion and the maturation of male germ cells to post meiotic stages is a valuable tool for studies exploring spermatogenesis regulation and the management of male infertility. Several studies have reported promising results of mouse spermatogonial stem cells culture in three-dimensional (3D) culture systems and a subsequent production of sperm. In the present study, we investigated the capacity of a three-dimensional soft agar culture system (SACS) supplemented with Knockout Serum Replacement (KSR) in colony formation and inducing human germ cells to reach post-meiotic stages. Testicular cells from testes of brain -dead donors were first cultured for three weeks in proliferation medium. The cells were subsequently cultured in the upper layer of the SACS (3D group) in a medium supplemented with KSR and hormones, and the results were compared with that of a two-dimensional (2D) culture system. We found that the number and diameter of colonies and the levels of expression of Scp3 and Integrin α6 in the 3D culture group were significantly higher than in the 2D group. Our findings indicate that SACS can reconstruct a microenvironment capable of regulating both proliferation and differentiation of cell colonies.  相似文献   

10.
Primordial germ cells (PGCs) are the founder cells of all gametes. PGCs differentiate from pluripotent epiblasts cells by mesodermal induction signals during gastrulation. Although PGCs are unipotent cells that eventually differentiate into only sperm or oocytes, they dedifferentitate to pluripotent stem cells known as embryonic germ cells (EGCs) in vitro and give rise to testicular teratomas in vivo, which indicates a "metastable" differentiation state of PGCs. We have shown that an appropriate level of phosphoinositide-3 kinase (PI3K)/Akt signaling, balanced by positive and negative regulators, ensures the establishment of the male germ lineage by preventing its dedifferentiation. Specifically, hyper-activation of the signal leads to testicular teratomas and enhances EGC derivation efficiency. In addition, PI3K/Akt signaling promotes PGC dedifferentiation via inhibition of the tumor suppressor p53, a downstream molecule of the PI3K/Akt signal. On the other hand, Akt activation during mesodermal differentiation of embryonic stem cells (ESCs) generates PGC-like pluripotent cells, a process presumably induced through equilibrium between mesodermal differentiation signals and dedifferentiation-inducing activity of Akt. The transfer of these cells to ESC culture conditions results in reversion to an ESC-like state. The interconversion between ESC and PGC-like cells helps us to understand the metastability of PGCs. The regulatory mechanisms of PGC dedifferentiation are discussed in comparison with those involved in the dedifferentiation of testicular stem cells, ESC pluripotency, and somatic nuclear reprogramming.  相似文献   

11.
Fibroblast growth factors (FGFs) are essential for maintaining self-renewal in human embryonic stem cells and induced pluripotent stem cells. Recombinant basic FGF (bFGF or FGF2) is conventionally used to culture pluripotent stem cells; however, because of the instability of bFGF, repeated addition of fresh bFGF into the culture medium is required in order to maintain its concentration. In this study, we demonstrate that a heat-stable chimeric variant of FGF, termed FGFC, can be successfully used for maintaining human pluripotent stem cells. FGFC is a chimeric protein composed of human FGF1 and FGF2 domains that exhibits higher thermal stability and protease resistance than do both FGF1 and FGF2. Both human embryonic stem cells and induced pluripotent stem cells were maintained in ordinary culture medium containing FGFC instead of FGF2. Comparison of cells grown in FGFC with those grown in conventional FGF2 media showed no significant differences in terms of the expression of pluripotency markers, global gene expression, karyotype, or differentiation potential in the three germ lineages. We therefore propose that FGFC may be an effective alternative to FGF2, for maintenance of human pluripotent stem cells.  相似文献   

12.
Pluripotent stem cell lines with similar phenotypes can be derived from both blastocysts (embryonic stem cells, ESC) and primordial germ cells (embryonic germ cells, EGC). Here, we present a compendium DNA microarray analysis of multiple mouse ESCs and EGCs from different genetic backgrounds (strains 129 and C57BL/6) cultured under standard conditions and in differentiation-promoting conditions by the withdrawal of Leukemia Inhibitory Factor (LIF) or treatment with retinoic acid (RA). All pluripotent cell lines showed similar gene expression patterns, which separated them clearly from other tissue stem cells with lower developmental potency. Differences between pluripotent lines derived from different sources (ESC vs. EGC) were smaller than differences between lines derived from different mouse strains (129 vs. C57BL/6). Even in the differentiation-promoting conditions, these pluripotent cells showed the same general trends of gene expression changes regardless of their origin and genetic background. These data indicate that ESCs and EGCs are indistinguishable based on global gene expression patterns alone. On the other hand, a detailed comparison between a group of ESC lines and a group of EGC lines identified 20 signature genes whose average expression levels were consistently higher in ESC lines, and 84 signature genes whose average expression levels were consistently higher in EGC lines, irrespective of mouse strains. Similar analysis identified 250 signature genes whose average expression levels were consistently higher in a group of 129 cell lines, and 337 signature genes whose average expression levels were consistently higher in a group of C57BL/6 cell lines. Although none of the genes was exclusively expressed in either ESCs versus EGCs or 129 versus C57BL/6, in combination these signature genes provide a reliable separation and identification of each cell type. Differentiation-promoting conditions also revealed some minor differences between the cell lines. For example, in the presence of RA, EGCs showed a lower expression of muscle- and cardiac-related genes and a higher expression of gonad-related genes than ESCs. Taken together, the results provide a rich source of information about the similarities and differences between ESCs and EGCs as well as 129 lines and C57BL/6 lines. Such information will be crucial to our understanding of pluripotent stem cells. The results also underscore the importance of studying multiple cell lines from different strains when making comparisons based on gene expression analysis.  相似文献   

13.
During development, cardiac commitment within the mesoderm requires endoderm-secreted factors. Differentiation of embryonic stem cells into the three germ layers in vitro recapitulates developmental processes and can be influenced by supplements added to culture medium. Hence, we investigated the effect of fetal bovine serum (FBS) and KnockOut serum replacement (SR) on germ layers specification and cardiac differentiation of H1 human embryonic stem cells (hESC) within embryoid bodies (EB). At the time of EB formation, FBS triggered an increased apoptosis. As assessed by quantitative PCR on 4-, 10-, and 20-day-old EB, FBS promoted a faster down-regulation of pluripotency marker Oct4 and an increased expression of endodermal (Sox17, alpha-fetoprotein, AFP) and mesodermal genes (Brachyury, CSX). While neuronal and hematopoietic differentiation occurred in both supplements, spontaneously beating cardiomyocytes were only observed in FBS. Action potential (AP) morphology of hESC-derived cardiomyocytes indicated that ventricular cells were present only after 2 months of culture. However, quantification of myosin light chain 2 ventricular (mlc2v)-positive areas revealed that mlc2v-expressing cardiomyocytes could be detected already after 2 weeks of differentiation, but not in all beating clusters. In conclusion, FBS enabled cardiac differentiation of hESC, likely in an endodermal-dependent pathway. Among cardiac cells, ventricular cardiomyocytes differentiated over time, but not as the predominant cardiac cell subtype.  相似文献   

14.
15.
Suspension culture systems are currently under investigation for the mass production of pluripotent stem (PS) cells for tissue engineering; however, the control of cell aggregation in suspension culture remains challenging. Existing methods to control aggregation such as microwell culture are difficult to scale up. To address this issue, in this study a novel method that incorporates the addition of KnockOut Serum Replacement (KSR) to the PS cell culture medium was described. The method regulated cellular aggregation and significantly improved cell growth (a 2‐ to 10‐fold increase) without any influence on pluripotency. In addition, albumin‐associated lipids as the major working ingredient of KSR responsible for this inhibition of aggregation were identified. This is one of the simplest methods described to date to control aggregation and requires only chemically synthesizable reagents. Thus, this method has the potential to simplify the mass production process of PS cells and thus lower their cost. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1009–1016, 2016  相似文献   

16.
Li Y  Cang M  Lee AS  Zhang K  Liu D 《PloS one》2011,6(1):e15947
Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.  相似文献   

17.
精原干细胞(spermatogonial stem cells,SSCs)是睾丸内具有自我复制和分化为精子潜能的干细胞,它的体外培养是精子发生机理研究和制作转基因动物等的新途径[1,2].近几年的研究表明,SSCs在体外的自我增殖需要GDNF(glial cell line-derived neu-rotrophie factor)因子和饲养层细胞等的支持[3-10].并且睾丸支持细胞(Sertoli's cells)和血清都导致培养的SSCs分化[1,6].因此,使用无血清培养基培养高度纯化的SSCs是培养成败的关键之一.  相似文献   

18.
We succeeded in the derivation and maintenance of pluripotent embryonic stem (ES) cells from equine and bovine blastocysts. These cells expressed markers that are characteristics of mouse ES cells, namely, alkaline phosphatase, stage-specific embryonic antigen 1, STAT 3 and Oct 4. We confirmed the pluripotential ability of these cells, which were able to undergo somatic differentiation in vitro to neural progenitors and to endothelial or hematopoietic lineages. We were able to use bovine ES cells as a source of nuclei for nuclear transfer and we generated cloned cattle with a higher frequency of pregnancies to term than has been achieved with somatic cells. On the other hand, we established human fetal membrane derived stem cell lines by the colonial cloning techniques using MEMalpha culture medium containing 10 ng/ml of EGF, 10 ng/ml of LIF and 10% fetal bovine serum (FBS). These cells appeared to maintain normal karyotype in vitro and expressed markers characteristics of stem cells. Furthermore, these cells contributed to the formation of chimeric murine embryoid bodies and gave rise to all three germ layers in vitro. Results from animal ES cells and human fetal membrane derived stem cells clearly demonstrate that these cells might be used for providing different types of cells for regenerative medicine as well as used for targeted genetic manipulation of the genome.  相似文献   

19.
20.
Bioassays were performed to assess the effects of different levels of growth medium supplementation with fetal bovine serum (FBS), fish fry extract (FE), combinations of FBS and FE, and addition of insulin-like growth factor I (IGF-I) and fibroblast growth factor (FGF) on the proliferation of brown bullhead catfish cells (BB line). Treatments (n = 4) were: 2.5, 5, 10, and 15.0% FBS or FE and 5/2.5, 5/5, 10/2.5, and 10/5 of a FBS/FE combination as supplement to the growth medium, or the addition of 0.1, 1, 2.5, 10, 25, and 75 ng/ml of either IGF-I or FGF to the growth media. Initial cell density was 1.1 x 10(6) cells per well on uncoated 24-well plates. Incubation temperature was 29.5 +/- 0.7 degrees C. Six hours after plating, initial culture medium was removed, plates rinsed with Dulbecco's phosphate buffered saline, treatment media added, and cells allowed to proliferate for 24 hours. Another bioassay was performed with rat myoblast omega cells (RMo) using the same levels of growth medium supplemented with FBS, FE and FBS/FE. Base growth medium was Dulbecco's MEM. The initial cell density was 7.2 x 10(6) cells per well, and the bioassay was carried out at 36.0 +/- 0.5 degrees C, on a 95% air, 5% CO2 incubator. Increasing levels of FBS had a positive effect (P < 0.05) on the proliferation of both BB and RMo cells. Increasing levels of FE had a negative effect (P < 0.05) on the proliferation of BB cells and totally inhibited the proliferation of RMo cells at any level of supplementation. Higher levels of FE on the FBS/FE combinations presented a negative effect on the proliferation of both BB and RMo cells (P < 0.05). Insulin-like growth factor I had a positive quadratic effect (P < 0.05) on the proliferation of BB cells. Apparently, mammalian growth factors slightly stimulated mitogenic activity in fish cells, while FE contained factors which inhibited the mitogenic activity of RMo and BB cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号