首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis is described of four tuftsin derivatives containing a D-glucopyranosyl or a D-galactopyranosyl unit covalently linked to the hydroxy side chain function of the threonine residue through either an alpha or beta O-glycosidic linkage. Fmoc-threonine derivatives containing the suitable unprotected sugar were used for incorporating the O-glycosylated amino acid residue. Z-Thr[alpha-Glc(OBzl)4]-OBzl and Z-Thr[alpha-Gal(OBzl)4]-OBzl were prepared from the tetra-O-benzylated sugar and Z-Thr-OBzl by the trichloroacetimidate method in the presence of trimethylsilyl trifluoromethane sulfonate. The alpha glycosylated threonine derivatives were converted into Fmoc-Thr(alpha-Glc)-OH and Fmoc-Thr(alpha-Gal)-OH by catalytic hydrogenation followed by acylation with Fmoc-OSu. beta-Glucosylation and beta-galactosylation of threonine were carried out by reacting the proper per-O-acetylated sugar with Z-Thr-OBzl and boron trifluoride ethyl etherate in dichloromethane. Catalytic hydrogenation of the beta-O-glycosylated threonine derivatives followed by acylation with Fmoc-OSu and deacetylation with methanolic hydrazine yielded Fmoc-Thr(beta-Glc)-OH and Fmoc-Thr(beta-Gal)-OH, respectively. The O-glycosylated threonine derivatives were then reacted with H-Lys(Z)-Pro-Arg(NO2)-OBzl in the presence of DCC and HOBt and the resulting glycosylated tuftsin derivatives were fully deblocked by catalytic hydrogenation, purified by HPLC, and characterized by optical rotation, amino acid analysis, and 1H NMR. The beta-galactosylated tuftsin was also prepared by the continuous flow solid phase procedure.  相似文献   

2.
Syntheses are described of two new tuftsin derivatives containing a 2-acetamido-2-deoxy-D-galactopyranosyl unit alpha- or beta-glycosidically linked to the threonine's hydroxy side chain function and of the glycosylated undecapeptide corresponding to the tuftsin region of the heavy chain of IgG (amino acid sequence 289-299). The glycosylated tuftsins were synthesized by the solution procedure. Fmoc-[Gal NAc(Ac)3 alpha]Thr-OH and Fmoc-[GalNAc(Ac)3 beta]Thr-OH were allowed to react with H-Lys(Z)-Pro-Arg(NO2)-OBzl by the mixed anhydride procedure and the resulting glycosylated tetrapeptides were fully deblocked by catalytic hydrogenation followed by treatment with potassium cyanide, purified by ion exchange chromatography and characterized by analytical HPLC, elemental and amino acid analyses, optical rotation, and proton NMR spectroscopy. Synthesis of the glycosylated undecapeptide was achieved by the continuous flow solid phase procedure on 4-hydroxymethylphenoxyacetyl-norleucyl derivatized Kieselguhr-supported resin. Fmoc-amino acid symmetrical anhydrides or pentafluorophenyl esters, in the presence of N-hydroxybenzotriazole, were used as the acylating agents. To mimic the native sequence of the tuftsin region at the Fc-domain of immunoglobulin G a 2-acetamido-2-deoxy-beta-D-glucopyranosyl unit was N-glycosidically linked to the amide side chain of Asn 297. The glycosylated asparagine residue was introduced as N2-fluorenylmethyloxycarbonyl-N4-(2-acetamido-3,4,6-tri-O-acetyl-2 -deoxy-beta-D - glucopyranosyl)-asparagine pentafluorophenyl ester. After cleavage from the resin the glycopeptide was deprotected, purified by ion exchange chromatography, and characterized by analytical HPLC, amino acid analysis, high voltage electrophoresis, and proton NMR. The conformational features of the glyco-undecapeptide were determined by circular dichroism measurements both in water and in 98% trifluoroethanol. Results of biological assays will be published elsewhere.  相似文献   

3.
Sample peptides Boc-Leu4-Aib-Leu4-OBzl and Boc-(Leu4-Aib)2-OBzl, were crystallized by the solvent-evaporation method. Both crystals are monoclinic, with space group of P2(1) and Z = 2. The cell parameters are a = 16.580 (7), b = 21.105 (7), c = 11.583 (4) A, and beta = 104.90 (3) degrees (Boc-Leu4-Aib-Leu4-OBzl), and a = 15.247 (9), b = 19.04 (1), c = 16.311 (9) A, and beta = 117.10 (1) degrees [Boc-(Leu4-Aib)2-OBzl]. Crystal structures were solved by the direct method and refined to R values of 0.096 (the former peptide) and 0.112 (the latter). Peptide backbones fold into a right-handed alpha-helix, except for the C-terminal Aib residue in Boc-(Leu4-Aib)2-OBzl. Both peptide molecules are stabilized by six (the former) or seven (the latter) intramolecular (5----1) hydrogen bonds, and arranged in the head-to-tail fashion, which makes an infinite column. In this column, one (the former) or two (the latter) intermolecular hydrogen bonds link the neighboring molecules. In the case of Boc-Leu4-Aib-Leu4-OBzl, the solvent molecule N,N-dimethylformamide was found in the difference Fourier map. There was a hydrogen bond between peptide and solvent molecule. Along the lateral direction, only hydrophobic contacts were observed between adjacent peptide molecules.  相似文献   

4.
Previously characterized mammalian soluble guanylyl cyclases form alpha/beta heterodimers that can be activated by the gaseous messenger, nitric oxide, and the novel guanylyl cyclase modulator YC-1. Four mammalian subunits have been cloned named alpha(1), beta(1), alpha(2), and beta(2). The alpha(1)/beta(1) and alpha(2)/beta(1) heterodimeric enzyme isoforms have been rigorously characterized. The role of the beta(2) subunit has remained elusive. Here we isolate a novel variant of this subunit and show that the beta(2) subunit does not need to form heterodimers for catalytic activity because enzyme activity can be measured when it is expressed alone in Sf9 cells. In analogy to the beta(3) subunit recently isolated from the insect Manduca sexta, activity was dependent on the presence of 4 mm free Mn(2+). The EC(50) values for the NO-donor diethylamine/NO were shifted to the left by 1 order of magnitude as compared with the alpha(1)/beta(1) heterodimeric form. In the presence of the detergent Tween, NO sensitivity of beta(2) was abolished, but the enzyme could be activated by protoporphyrin IX, indicating removal of a prosthetic heme group and exchange for the heme precursor. We suggest that the beta(2) subunit is the first mammalian NO-sensitive guanylyl cyclase lacking a heterodimeric structure.  相似文献   

5.
Measurements are presented on the time course of chain exchange among two-chain alpha-helical coiled coils of rabbit tropomyosin. All experiments are in a regime (temperature, protein concentration) in which coiled-coil dimers are the predominant species. Self-exchange in alpha alpha-tropomyosin was investigated by mixing alpha alpha species with alpha* alpha*, the asterisk designating an alpha-chain whose lone sulfhydryl (C190) has been blocked by carboxyamidomethylation. The overall process alpha alpha + alpha* alpha* in equilibrium with 2 alpha alpha* is followed by measurement of the fraction (h) of alpha alpha* species as a function of time. Similarly, self-exchange in beta beta-tropomyosin is examined by measurements of the overall process: beta beta + beta* beta* in equilibrium with 2 beta beta*, in which beta* signifies a beta-chain blocked at both sulfhydryls (C36 and C190). The observed time course for both chains is well fit by the first-order equation: h (t) = h (infinity) (1-e-k1t), with h (infinity) congruent to 0.5. This long-time limit is as expected for self-exchange, and agrees with experiments that attain equilibrium after slow cooling of thermally dissociated and unfolded chains. The simplest consonant mechanism is chain exchange by rate-limiting dissociation of dimers followed by random reassociation. Kinetic analysis shows k1 to be the rate constant for the chain dissociation step, a quantity not previously measured for any coiled coil. This rate constant for beta beta species is about an order of magnitude greater than for alpha alpha. In both, the activation enthalpy and entropy are very large, suggesting that activation to an extensively (greater than 50%) unfolded species necessarily precedes dissociation. Experiments are also reported for overall processes: alpha alpha + beta* beta* in equilibrium with 2 alpha beta* and alpha* alpha* + beta beta in equilibrium with 2 alpha* beta. Results are independent of which chain is blocked. Again h (infinity) congruent to 0.5, in agreement with equilibrium experiments, and the time course is first order. The rate constants and activation parameters are intermediate between those for self-exchange.  相似文献   

6.
Monoclonal antibodies to rabbit skeletal muscle phosphorylase kinase were produced by the conventional hybridoma cell technique. 90 out of 600 hybridomas were found to produce phosphorylase kinase binding antibodies from which only five secreted also phosphorylase kinase activity affecting antibodies. Three of them were cloned; two hybridomas resisted all cloning efforts. Employing immunoblot technique all monoclonal antibodies show cross-reactivity with the alpha, beta, and gamma subunits of phosphorylase kinase indicating that similar, if not identical, epitopes are present on these three subunits. No cross-reactivity with delta is observed. Monoclonal antibodies secreted by two clones which bind to the alpha subunit stimulate the Ca2+-independent A0 activity of phosphorylase kinase more than 30-fold, whereas all other monoclonal antibodies obtained are ineffective in this respect. Monoclonal antibodies binding to the beta subunit inhibit the Ca2+-dependent activities significantly. Antibody produced by one hybridoma binds to the alpha, beta, and gamma subunits with approximately the same affinity. Based on the dual function of calmodulin in phosphorylase kinase (Hessová, Z., Varsányi, M., and Heilmeyer, L.M.G., Jr. (1985) Eur. J. Biochem. 146, 107-115) we conclude that binding of anti-alpha monoclonal antibodies to a regulatory domain in the alpha subunit results in an uncoupling of the inhibitory function of the Ca2+-free delta from the holoenzyme which leads to a concomitant increase in A0 activity. Furthermore, binding of anti-beta monoclonal antibodies to the beta subunit prevents a signal transfer from the Ca2+-saturated delta to the catalytic site of the holoenzyme which inhibits the Ca2+-dependent activities.  相似文献   

7.
Winger JA  Marletta MA 《Biochemistry》2005,44(10):4083-4090
The catalytic domains (alpha(cat) and beta(cat)) of alpha1beta1 soluble guanylate cyclase (sGC) were expressed in Escherichia coli and purified to homogeneity. alpha(cat), beta(cat), and the alpha(cat)beta(cat) heterodimeric complex were characterized by analytical gel filtration and circular dichroism spectroscopy, and activity was assessed in the absence and presence of two different N-terminal regulatory heme-binding domain constructs. Alpha(cat) and beta(cat) were inactive separately, but together the domains exhibited guanylate cyclase activity. Analysis by gel filtration chromatography demonstrated that each of the approximately 25-kDa domains form homodimers. Heterodimers were formed when alpha(cat) and beta(cat) were combined. Results from circular dichroism spectroscopy indicated that no major structural changes occur upon heterodimer formation. Like the full-length enzyme, the alpha(cat)beta(cat) complex was more active in the presence of Mn(2+) as compared to the physiological cofactor Mg(2+), although the magnitude of the difference was much larger for the catalytic domains than for the full-length enzyme. The K(M) for Mn(2+)-GTP was measured to be 85 +/- 18 microM, and in the presence of Mn(2+)-GTP, the K(D) for the alpha(cat)beta(cat) complex was 450 +/- 70 nM. The N-terminal heme-bound regulatory domain of the beta1 subunit of sGC inhibited the activity of the alpha(cat)beta(cat) complex in trans, suggesting a domain-scale mechanism of regulation by NO. A model in which binding of NO to sGC causes relief of an autoinhibitory interaction between the regulatory heme-binding domain and the catalytic domains of sGC is proposed.  相似文献   

8.
Thrombin, in addition to its central role in hemostasis, possesses diverse cellular bioregulatory functions implicated in wound healing, inflammation, and atherosclerosis. In the present study we demonstrate that thrombin molecules modified either at the procoagulant or catalytic sites induce endothelial cell (EC) adhesion, spreading, and cytoskeletal reorganization. The most potent adhesive thrombin analogue (NO2-alpha-thrombin) was obtained by nitration of tyrosine residues. The cell adhesion promoting activity of NO2-alpha-thrombin was blocked upon the formation of thrombin-antithrombin III (ATIII) complexes and by antiprothrombin antibodies, but was unaffected by hirudin. Arg-Gly-Asp-containing peptides, fully inhibited EC adhesion to NO2-alpha-thrombin, while synthetic peptides corresponding to thrombin "Loop B" mitogenic site and the thrombin-derived chemotactic fragment "CB67-129", were uneffective. Immunofluorescence studies indicated that EC adhesion to NO2-alpha-thrombin was followed by cell spreading, actin microfilament assembly, and formation of focal contacts. By the use of specific antibodies, the vitronectin (vn) receptor (alpha v beta 3) was found to be localized in clusters upon cell adhesion to NO2-alpha-thrombin. An anti alpha v beta 3 antibody blocked EC adhesion and spreading while antifibronectin (fn) receptor (alpha 5 beta 1) antibodies were uneffective. While native thrombin exhibited a very low cell attachment activity, thrombin that was incubated at 37 degrees C before coating of plastic surfaces induced EC attachment and spreading. We propose that under certain conditions the naturally hindered RGD domain within thrombin is exposed for interaction with alpha v beta 3 on EC. This in turn promotes cell adhesion, spreading, and reorganization of cytoskeletal elements, which may altogether contribute to repair mechanisms in the disturbed vessel wall. This study defines a new biological role of thrombin and characterizes a new recognition mechanism on EC for this molecule.  相似文献   

9.
Zimmermann JL  Amano T  Sigalat C 《Biochemistry》1999,38(46):15343-15351
The properties of the nucleotide binding sites in the isolated beta and alpha subunits of H(+)-ATPase from Bacillus PS3 (TF1) have been examined by studying the EPR properties of bound VO(2+), which is a paramagnetic probe for the native Mg2+ cation cofactor. The amino acid ligands of the VO2+ complexes with the isolated beta subunit, with the isolated alpha subunit, with different mixtures of both alpha and beta subunits, and with the catalytic alpha 3 beta 3 gamma subcomplex have been characterized by a combination of EPR, ESEEM, and HYSCORE spectroscopies. The EPR spectrum of the isolated beta subunit with bound VO2+ (1 VO2+/beta) is characterized by (51)V hyperfine coupling parameters (A( parallel) = 168 x 10(-)(4) cm(-)(1) and A( perpendicular) = 60 x 10(-)(4) cm(-)(1)) that suggest that VO2+ binds to the isolated beta subunit with at least one nitrogen ligand. Results obtained for the analogous VO2+ complex with the isolated alpha subunit are virtually identical. ESEEM and HYSCORE spectra are also reported and are similar for both complexes, indicating a very similar coordination scheme for VO2+ bound to isolated alpha and beta subunits. In the isolated beta (or alpha) subunit, the bound VO2+ cation is coordinated by one nitrogen ligand with hyperfine coupling parameters A( parallel)((14)N) = 4.44 MHz, and A( perpendicular)((14)N) = 4.3 MHz and quadrupole coupling parameters e(2)()qQ approximately 3.18 MHz and eta approximately 1. These are typical for amine-type nitrogen ligands equatorial to the VO2+ cation; amino acid residues in the TF1 beta and alpha subunits with nitrogen donors that may bind VO2+ are reviewed. VO2+ bound to a mixture of alpha and beta subunits in the presence of 200 mM Na2SO4 to promote the formation of the alpha 3 beta 3 hexamer has a second nitrogen ligand with magnetic properties similar to those of a histidine imidazole. This situation is analogous to that in the alpha 3 beta 3 gamma subcomplex and in the whole TF1 enzyme [Buy, C., Matsui, T., Andrianambinintsoa, S., Sigalat, C., Girault, G., and Zimmermann, J.-L. (1996) Biochemistry 35, 14281-14293]. These data are interpreted in terms of only partially structured nucleotide binding sites in the isolated beta and alpha subunits as compared to fully structured nucleotide binding sites in the alpha 3 beta 3 heterohexamer, the alpha 3 beta 3 gamma subcomplex, and the whole TF1 ATPase.  相似文献   

10.
The signaling molecule nitric oxide (NO) exerts most of its effects by the stimulation of the NO-sensitive guanylyl cyclase. Two isoforms of the NO receptor molecule exist: the ubiquitously occurring alpha(1)beta(1) and the alpha(2)beta(1) with a more limited distribution. As the isoforms are functionally indistinguishable, the physiological relevance of these isoforms remained unclear. The neuronal NO synthase has been reported to be associated with PSD-95. Here, we demonstrate the interaction of the so far unnoticed alpha(2)beta(1) isoform with PSD-95 in rat brain as shown by coprecipitation. The interaction is mediated by the alpha(2) C-terminal peptide and the third PDZ domain of PSD-95. As a consequence of the PSD-95 interaction, the so far considered "soluble" alpha(2)beta(1) isoform is recruited to the membrane fraction of synaptosomes, whereas the alpha(1)beta(1) isoform is found in the cytosol. Our results establish the alpha(1)beta(1) as the cytosolic and the alpha(2)beta(1) as the membrane-associated NO-sensitive guanylyl cyclase and suggest the alpha(2)beta(1) isoform as the sensor for the NO formed by the PSD-95-associated neuronal NO synthase.  相似文献   

11.
I Morishima  M Hara  K Ishimori 《Biochemistry》1986,25(22):7243-7250
To gain further insight into the quaternary structures of methemoglobin derivatives in the low-spin state, the interaction of fully liganded valency hybrid human hemoglobins with IHP was studied by proton NMR spectroscopy. Upon addition of IHP to (alpha CO beta + N3-)2, the same resonances as the previously reported IHP-induced NMR peaks for azidomethemoglobin (alpha + N3-beta +N3-)2 appeared, whereas the binding of IHP did not significantly affect the NMR spectra for (alpha + N3-beta CO)2. The binding of IHP also brought about more pronounced spectral changes for (alpha CO beta + Im)2 and (alpha CO beta + H2O)2 than for (alpha + Im beta CO)2 and (alpha + H2O beta CO)2. Therefore, the IHP-induced NMR peaks for azidomethemoglobin are attributed to the beta heme methyl group. Such IHP-induced beta heme methyl resonances were also observed for (alpha NO beta + N3-)2, which undergoes quaternary structural change, analogously to the R-T transition by the binding of IHP. From the above results, it was suggested that the IHP-induced heme methyl resonances for azidomethemoglobin and (alpha CO beta +N3-)2 may also be associated with the quaternary structure of these Hbs, implying the presence of the IHP-induced "T-like" state in low-spin metHb A.  相似文献   

12.
Casein kinase II is an ubiquitous serine-threonine kinase whose functional significance and regulation in the living cell are not clearly understood. The native enzyme has an oligomeric structure made of two different (alpha and beta) subunits with an alpha 2 beta 2 stoichiometry. To facilitate the study of the structure-activity relationship of the kinase, we have expressed its isolated subunits in a baculovirus-directed insect cell expression system. The resulting isolated recombinant alpha subunit exhibited a protein kinase catalytic activity, in agreement with previous observations [Cochet, C., & Chambaz, E. M. (1983) J. Biol. Chem. 258, 1403-1406]. Coinfection of insect cells with recombinant viruses encoding the two kinase subunits resulted in the biosynthesis of a functional enzyme. Active recombinant oligomeric kinase was purified to near homogeneity with a yield of about 5 mg of enzymatic protein per liter, showing that, in coinfected host cells, synthesis was followed, at least in part, by recombination of the two subunits with an alpha 2 beta 2 stoichiometry. The catalytic properties of the recombinant enzyme appeared highly similar to those previously observed for casein kinase II purified from bovine tissue. Access to the isolated subunits and to their alpha 2 beta 2 association disclosed that the beta subunit is required for optimal catalytic activity of the kinase. In addition, the beta subunit is suggested to play an essential role in the regulated activity of the native casein kinase II. This is clearly illustrated by the observation of the effect of spermine which requires the presence of the beta subunit to stimulate the kinase catalytic activity which is borne by the alpha subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Kim HS  Kim DI 《Steroids》1999,64(12):844-848
(25R)-3beta,26-Dihydroxy-5alpha-cholest-8(14)-en-15-one (1) and (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2) were synthesized from (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-ene (4). Oxidation of 4 with CrO3-3,5-dimethylpyrazole at -20 degrees C gave (25R)-3beta,26-dibenzoyloxy-5alpha,14alpha-chole st-16-en-15-one (5) along with (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-16alpha+ ++,17alpha-epoxide (6). Oxidation of 5 with selenium dioxide afforded (25R)-3beta,26-dibenzoyloxy-5alpha-cholest-8(14),16-++ +dien-15-one (7) and (25R)-3beta,26-dibenzoyloxy-5alpha,14beta-choles t-16-en-15-one (8). Selective hydrogenation of 7 followed by hydrolysis in alcoholic potassium hydroxide yielded (25R)-3beta,26-dihydroxy-5alpha-cholest-8(14)-en-15-one (1). Hydrolysis of 5 and 8 in alcoholic potassium hydroxide provided (25R)-3beta,26-dihydroxy-5alpha,14beta-cholest-16-en-1 5-one (2).  相似文献   

14.
The classical view of the aerobic decomposition of Angeli's salt is that it releases NO(2)(-) + NO(-)/HNO the latter then reacting with O(2) to yield ONOO(-). An alternative that has recently been proposed envisions electron transfer to O(2) followed by decomposition to NO(2)(-) + NO. The classical view is now strongly supported by the observation that the rates of decomposition of Angeli's salt under 20% O(2) or 100% O(2) were equal. Moreover, NO(2)(-), which inhibits this decomposition by favoring the back reaction, was more effective in the absence of agents that scavenge NO(-)/HNO. It is thus clear that Angeli's salt is a useful source of NO(-)/HNO for use in defined aqueous systems. The measurements made in the course of this work allowed approximation of the rate constants for the reactions of NO(-)/HNO with NO(2)(-), O(2), glutathione, or Cu, Zn superoxide dismutase. The likelihood of the formation of NO(-)/HNO in vivo is also discussed.  相似文献   

15.
Incubation of Rhodospirillum rubrum chromatophores with 2 M LiCl in the presence of MgATP has been shown to remove their F1 beta subunit leaving inactive but fully reconstitutable beta-less chromatophores (Gromet-Elhanan, Z., and Khanashvili, D., (1986) Methods Enzymol, 126, 528-538). A similar treatment of thoroughly washed spinach thylakoids has now been shown to release the CF1 beta subunit (CF1 beta) together with a complex containing equal amounts of CF1 alpha and CF1 beta (CF1 (alpha beta]. The purified CF1 (alpha beta) complex can reconstitute an active membrane-bound hybrid F0F1-ATPase with beta-less R. rubrum chromatophores and also catalyzes a low but very reproducible soluble MgATPase. Purified CF1 beta shows none of these activities although it can bind as efficiently as CF1 (alpha beta) to the beta-less chromatophores. By subjecting the crude spinach 2 m LiCl extract to dissociating conditions an enriched CF1 beta preparation is released. It contains traces of CF1 alpha and CF1 delta, is able to reconstitute an active hybrid F0F1-ATPase but, as the pure CF1 beta shows no soluble ATPase activity. These results indicate that trace amounts of CF1 alpha are enough for endowing CF1 beta with a reconstitutive capacity, but for exhibition of a significant soluble ATPase activity equivalent amounts of CF1 alpha and beta are required. The CF 1 (alpha beta) complex isolated and purified in this report thus represents the minimal catalytic core of the CF1-ATPase.  相似文献   

16.
Casein kinase II (CKII) is composed of a catalytic (alpha) and a regulatory (beta) subunit which unite to form an alpha 2 beta 2 holoenzyme. Saccharomyces cerevisiae CKII consists of two distinct catalytic (Sc alpha and Sc alpha') and regulatory (Sc beta and Sc beta') subunits. Simultaneous disruption of the CKA1 and CKA2 genes (encoding the alpha and alpha' subunits, respectively) is lethal. Such double disruptions can be rescued by GAL1, 10-induced expression of the Drosophila alpha and beta subunits (Dm alpha+beta) together or by GAL10-induced expression of the Drosophila alpha subunit (Dm alpha) alone (Padmanabha, R., Chen-Wu, J. L.-P., Hanna, D. E., and Glover, C. V. C. (1990) Mol. Cell. Biol. 10, 4089-4099). Here we report quantitation, purification, and characterization of casein kinase II activity from such rescued strains. Casein kinase II activity from a strain rescued by Dm alpha alone purifies as a free, catalytically active alpha subunit monomer, whereas that from a strain rescued by Dm alpha/beta purifies as a mixture of tetrameric holoenzyme and monomeric alpha subunit. Interestingly, neither Sc beta nor Sc beta' is present at detectable levels in the enzyme obtained from either strain, raising the possibility that rescue by Dm alpha alone may be mediated via the free, monomeric catalytic subunit. Overexpression of total casein kinase II activity from 6- to 18-fold is not toxic and indeed has no overt phenotypic consequences. Production of large amounts of free catalytic subunit also appears to be without effect, even though free catalytic subunit is normally undetectable in S. cerevisiae.  相似文献   

17.
Brain intracellular platelet-activating factor acetylhydrolase (PAF-AH) isoform I is a member of a family of complex enzymes composed of mutually homologous alpha(1) and alpha(2) subunits, both of which account for catalytic activity, and the beta subunit. We previously demonstrated that the expression of one catalytic subunit, alpha(1), is developmentally regulated, resulting in a switching of the catalytic complex from alpha(1)/alpha(2) to alpha(2)/alpha(2) during brain development (Manya, H., Aoki, J., Watanabe, M., Adachi, T., Asou, H., Inoue, Y., Arai, H., and Inoue, K. (1998) J. Biol. Chem. 273, 18567-18572). In this study, we explored the biochemical differences in three possible catalytic dimers, alpha(1)/alpha(1), alpha(1)/alpha(2), and alpha(2)/alpha(2). The alpha(2)/alpha(2) homodimer exhibited different substrate specificity from the alpha(1)/alpha(1) homodimer and the alpha(1)/alpha(2) heterodimer, both of which showed similar substrate specificity. The alpha(2)/alpha(2) homodimer hydrolyzed PAF and 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylethanolamine (AAGPE) most efficiently among 1-O-alkyl-2-acetyl-phospholipids. In contrast, both alpha(1)/alpha(1) and alpha(1)/alpha(2) hydrolyzed 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoric acid more efficiently than PAF. AAGPE was the poorest substrate for these enzymes. The beta subunit bound to all three catalytic dimers but modulated the enzyme activity in a catalytic dimer composition-dependent manner. The beta subunit strongly accelerated the enzyme activity of the alpha(2)/alpha(2) homodimer but rather suppressed the activity of the alpha(1)/alpha(1) homodimer and had little effect on that of the alpha(1)/alpha(2) heterodimer. The (His(149) to Arg) mutant beta, which has been recently identified in isolated lissencephaly sequence patients, lost the ability to either associate with the catalytic complexes or modulate their enzyme activity. The enzyme activity of PAF-AH isoform I may be regulated in multiple ways by switching the composition of the catalytic subunit and by manipulating the beta subunit.  相似文献   

18.
M L Doyle  G K Ackers 《Biochemistry》1992,31(45):11182-11195
Correlations between the energetics of cooperativity and quaternary structural probes have recently been made for the intermediate ligation states of Hb [Daugherty et al. (1991) Proc. Natl. Acad. Sci. US 88, 1110-1114]. This has led to a "molecular code" which translates configurations of the 10 ligation states into switch points of quaternary transition according to a "symmetry rule"; T-->R quaternary structure change is governed by the presence of at least one heme-site ligand on each of the alpha beta dimeric half-molecules within the tetramer [see Ackers et al. (1992) Science 255, 54-63, for summary]. In order to further explore this and other features of the cooperative mechanism, we have used oxygen binding to probe the energetics and cooperativities for the vacant sites of the cyanomet ligation species. We have also probed structural aspects of all eight cyanomet ligation intermediates by means of sulfhydryl reaction kinetics. Our oxygen binding results, obtained from a combination of direct and indirect methods, demonstrate the same combinatorial aspect to cooperativity that is predicted by the symmetry rule. Overall oxygen affinities of the two singly-ligated species (alpha +CN beta)(alpha beta) and (alpha beta +CN)(alpha beta) were found to be identical (pmedian = 2.4 Torr). In contrast, the doubly-ligated species exhibited two distinct patterns of oxygen equilibria: the asymmetric species (alpha +CN beta +CN)(alpha beta) showed very high cooperativity (nmax = 1.94) and low affinity (pmedian = 6.0 Torr), while the other three doubly-ligated species showed diminished cooperativity (nmax = 1.23) and considerably higher oxygen affinity (pmedian = 0.4 Torr). Extremely high oxygen affinities were found for the triply-ligated species (alpha +CN beta +CN)(alpha beta +CN) and (alpha +CN beta +CN)(alpha +CN beta) (pmedian = 0.2 Torr). Their oxygen binding free energies are considerably more favorable than those of the alpha and beta subunits within the dissociated alpha beta dimer, demonstrating directly the quaternary enhancement effect, i.e., enhanced oxygen affinity at the last binding step of tetramer relative to the dissociated protomers. Oxygen binding free energies measured for the alpha subunit within the isolated (alpha beta +CN) dimer and for the beta subunit within the isolated (alpha +CN beta) dimer sum to the free energy for binding two oxygens to normal hemoglobin dimers (-16.3 +/- 0.2 versus -16.7 +/- 0.2, respectively), arguing against cooperativity in the isolated dimer. Correlations were established between cooperative free energies of the 10 cyanomet ligation microstates and the kinetics for reacting their free sulfhydryl groups.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Chitinase A (ChiA) from Serratia marcescens is a mesophilic enzyme with high catalytic activity and high stability. The crystal structure of ChiA has revealed a TIM-barrel fold of the catalytic domain, an (alpha+beta) insertion between the B7 beta-strand and A7 alpha-helix of the TIM-barrel, an FnIII domain at the N-terminus of the molecule and a hinge region that connects the latter to the catalytic domain. In this study, the role of the (alpha+beta) domain on the stability, catalytic activity and specificity of the enzyme was investigated by deleting this domain and studying the enzymatic and structural properties of the resulting truncated enzyme. The obtained data clearly show that by removing the (alpha+beta) domain, the thermal stability of the enzyme is substantially reduced, with an apparent T(m) of 42.0+/-1.0 degrees C, compared to the apparent T(m) of 58.1+/-1.0 degrees C of ChiA at pH 9.0. The specific activity of ChiADelta(alpha+beta) was substantially decreased, the pH optimum was shifted from 6.5 to 5.0 and the substrate and product specificities were altered.  相似文献   

20.
Methyl glycoside of the tetrasaccharide GlcNAc(beta 1-2)Rha(alpha 1-2)Rha(alpha 1-3)Rha, which represents a repeating unit of the basic chain of Shigella flexneri O-antigenic polysaccharides, was synthesized using acylated monosaccharide synthons. A dimer of the repeating unit, octasaccharide [GlcNAc(beta 1-2)Rha(alpha 1-2) Rha(alpha 1-3)Rha(alpha 1-3)]2-OMe was obtained by TrClO4-catalyzed condensation of two tetrasaccharide blocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号