首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoregulation of phenylalanine ammonia lyase (PAL)(EC 4.3.1.5 [EC] )was analyzed in wild type (WT) and mutants: phytochrome dencient-awrea(au), high pigment exhibiting exaggerated phytochrome response(hp) and the double mutant (au.hp) of tomato (Lycopersicon esculentum(Mill.) cv. Ailsa Craig). Red light, acting via phytochrome,stimulates PAL activity in cotyledons and hypocotyls of tomatoseedlings. The time course of photoinduction of PAL in cotyledonsof the mutants (au and au.hp) and WT seedlings has a peak ofactivity at 4 h, after which the activity falls sharply, exceptin hp seedlings where activity is maintained at a high level.In hypocotyls, photoinduction of PAL also shows an initial rise,reaching a maximum at 3 h, followed by a sharp decline in themutants (au and au.hp) and WT seedlings. However in hp seedlingsphotoinduction of PAL is about 3 fold that in WT. The photoinductionof PAL appears to be dependent on de novo synthesis of proteinand nucleic acids. The use of a PAL specific inhibitor a-aminooxyß-phenylpropionic acid indicated that PAL is an essentialcomponent of the anthocyanin biosyn-thetic pathway in the tomatoseedlings. However, a comparison of anthocyanin biosynthesis[Adamse et al. (1989) Photochem. Photobiol. 50: 107] and PALphotoinduction data revealed that phytochrome mediated inductionof PAL and anthocyanin in the tomato seedlings are not correlated.While au and au.hp mutant seedlings show a similar increasein PAL level as in the WT, there is little formation of anthocyaninin these mutant seedlings. The results indicate that, in contrastto the photoregulation of anthocyanin synthesis which is dependenton the presence of the labile phytochrome (IP) pool in tomatoseedlings, the photoinduction of PAL is mediated via a smallpool of phytochrome in au mutant: stable phytochrome (sP) ora residual /P pool. (Received August 6, 1991; Accepted September 27, 1991)  相似文献   

2.
3.
The effects of blue light (B) on stem extension growth were investigated in wild-type (WT) and aurea (au ) mutant seedlings of tomato. The au mutant has reduced phytochrome levels. Etiolated seedlings were grown under background red light (R) or far-red light (FR) with or without B. Hypocotyl growth was inhibited by B added to R but not by B added to FR, both in WT and au seedlings. The levels of B and/or R reaching the stem of fully de-etiolated seedlings grown in a glasshouse were reduced by means of collars around it. Both in WT and au -mutant seedlings the responses to B were larger at high than at low R/FR quantum ratios. In etiolated and light-grown au seedlings, changing the levels of phytochrome-absorbable radiation did not cause the same effect as changing B levels, indicating the action of specific BL/UV-A photoreceptor(s) (BAP). The responses to B are reduced by the low calculated levels of Pfr established by light treatments but not by the low levels of phytochrome present in the au mutant. The au mutant appears to be deficient in a phytochrome pool that is not essential for the interdependent co-action observed between phytochrome and BAP in the control of stem extension growth in tomato.  相似文献   

4.
Two alleles of the yellow-green-2 ( yg-2) and eight different alleles of the aurea ( au ) locus of tomato ( Lycopersicon esculentum Mill.) were compared. All are characterized by a paler green colour compared with wild-type (WT), an elongated hypocotyl in red light, and low or below detection limits of spectrophotometrically active phytochrome. Hypocotyl length was variable in white light, ranging from that of WT to more elongated. Immunochemical analysis revealed that etiolated seedlings of the yg-2 mutant have approximately 25% of the WT level of phytochrome A protein (PHYA), whereas that of phytochrome B protein (PHYB) is normal. In this it resembles the au mutant. The au,yg-2 double mutant has a more extreme chlorophyll deficiency than either parent. Since the yg-2 and au mutants have a less severe phenotype at the adult stage, that is, are leaky, the additive effect can be explained by assuming that the mutants control two steps in the chromophore biosynthesis pathway. Combination, by crossing, of the yg-2 and au mutants with a transgenic tomato line that overexpresses oat phytochrome A3 (PhyA-3) essentially failed to restore the WT phenotype under white fluorescent light conditions, although under greenhouse conditions some evidence for increased sensitivity to light was observed. Immunochemically, oat PHYA-3 protein is detectable in both the yg-2,PhyA-3 and au,PhyA-3 'double' mutants. Spectrophotometrical analysis, however, revealed that holophytochrome was undetectable in the yg-2,PhyA-3 and au,PhyA-3 'double' mutants. These results are compatible with both mutants being disturbed in phytochrome chromophore biosynthesis.  相似文献   

5.
The contents of spectrophotometrically measurable phytochrome A (PhyA) and phytochrome B (PhyB) and the corresponding immunochemically detectable apoproteins (PHYA and PHYB) were examined in dark- and light-grown tissues of the aurea mutant of tomato and its wild-type (WT). The amount of PHYA in etiolated aurea seedlings was found to be about 20% of that in the WT; this PHYA showed no photoreversible changes in absorbance, no downregulation of the level of PHYA in light-grown seedlings, and no differential proteolysis of Pr and Pfr species in vitro which was seen in the case of the WT. By contrast, the amount of PHYB in aurea seedlings was not significantly different from that in WT seedlings. Phytochrome isolated from green leaves of the aurea mutant and purified by ion-exchange chromatography showed a red/far-red reversible spectral change, and its elution profile during chromatography was essentially similar to that of PHYB. The results indicate that aurea is a mutant that is deficient in photoactive PhyA at the etiolated stage, when it contains a spectrally inactive PHYA. However, the mutant contains spectrally active PhyB in its green tissue as does the WT.  相似文献   

6.
The photocontrol of hypocotyl elongation has been studied in two transgenic lines of Arabidopsis thaliana which contain elevated levels of phytochrome B encoded by either an introduced rice- or Arabidopsis -derived cDNA driven by the 35S CaMV promoter. Inhibition of hypocotyl growth in etiolated seedlings of the phyB -transformed lines was saturated at photon fluence rates of continuous red light (R) which were markedly lower than those required for inhibition of growth in seedlings of the isogenic wild-type (WT). Inhibition of hypocotyl growth in etiolated seedlings of the phyB -transgenic lines under continuous far-red irradiation (FR), however, showed the same relationship with fluence rate as WT. Light-grown seedlings of the phyB -transgenic lines responded to end-of-day FR by an acceleration of growth, in a manner comparable with WT. This response was unaltered when the end-of-day FR was extended from a 15 min pulse to 14 h of continuous irradiation. The response of light-grown, phyB -transformed seedlings to decreasing R:FR ratio was also qualitatively similar to WT, i.e. increased elongation growth of the hypocotyl and petioles occurred under low R:FR quantum ratio. However, absolute elongation growth was markedly less in the transgenic seedlings at all R:FR ratios tested than in WT. Together, these data indicate that seedlings over-expressing phytochrome B are more responsive to R than are WT, but are unaltered in their responsiveness to FR. By contrast, seedlings overexpressing phytochrome A are more responsive than WT to both R and FR; whereas the phytochrome B-deficient mutant hy3 is unresponsive to R while retaining WT-like responsiveness to FR. These data indicate that in WT etiolated seedlings phytochrome A mediates the effects of continuous FR, and phytochrome B the effects of continuous R. The evidence thus supports the conclusion that these two molecular species of the photoreceptor have differential regulatory roles in the plant.  相似文献   

7.
Jorge J. Casal 《Planta》1995,196(1):23-29
Etiolated seedlings of the wild-type (WT) and of the phyB-1 mutant of Arabidopsis thaliana (L.) Heynh. were exposed to red-light (R) and far-red light (FR) treatments to characterize the action of phytochrome B on hypocotyl extension growth. A single R or FR pulse had no detectable effects on hypocotyl growth. After 24-h pre-treatment with continuous FR (FRc) a single R, compared to FR pulse inhibited (more than 70%) subsequent hypocotyl growth in the WT but not in the phyB-1 mutant. This effect of FRc was fluence-rate dependent and more efficient than continuous R (Rc) or hourly FR pulses of equal total fluence. Hypocotyl growth inhibition by Rc was larger in WT than phyB-1 seedlings when chlorophyll screening was reduced either by using broadband Rc (maximum emission 610 nm) or by using narrow-band Rc (658 nm) over short periods (24 h) or with seedlings bleached with Norflurazon. Hourly R or R + FR pulses had similar effects in WT and phyB-1 mutant etiolated seedlings. It is concluded that phytochrome B is not the only photoreceptor of Rc and that the action of phytochrome B is enhanced by a FRc high-irradiance reaction. Complementary experiments with the phyA-201 mutant indicate that this promotion of a phytochrome B-mediated response occurs via co-action with phytochrome A.Abbreviations D darkness - FR far-red light - FRc continuous FR - Pfr FR-absorbing form of phytochrome - HIR high-irradiance reaction - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - Rc continuous R - WT wild-type I thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands) and Professor J. Chory (Salk Institute, Calif., USA) for their kind provision of the original WT and phyB-1 and phyA-201 seed, respectively. This work was financially supported by grants PID and PID-BID from CONICET, AG 040 from Universidad de Buenos Aires and A 12830/1-000019 from Fundación Antorchas.  相似文献   

8.
9.
光质对水稻幼苗初级氮同化的影响   总被引:12,自引:0,他引:12  
用滤光膜过滤蓝色或红色荧光灯,得到纯的蓝光和红光,以白光为对照,研究不同光质对水稻(Oryza sativa L.)幼苗初级氮同化的影响。结果表明:蓝光促进水稻黄化幼苗吸收NO^-3含量,并促进NR(硝酸还原酶)的诱导。在蓝光下生长5 ̄7d的幼苗的NR、NIR(亚硝酸还原酶)、GS(谷氨酰胺合成酶)和GOGAT(谷氨酸合酶)活性均高于白光下生长的,但第10天以后,白光下生长的幼苗酶活性最高。与白光  相似文献   

10.
光质对水稻幼苗初级氮同化的影响   总被引:2,自引:0,他引:2  
Pure blue(BL) or red light (RL) were obtained by filtering blue or red fluorescent lamp light through plastic filters. With the same intensity of white light(WL) as control, the effects of light quality on the primary nitrogen assimilation of rice seedlings were studied. Irradiation for 2-6 h with BL promoted the uptake of NO-3, the induction of nitrate reductase (NR), and the increase of the NO-3 content in the etiolated seedlings.Seedlings grown under BL for 5-7 d had higher activities of NR, NIR (nitrite reductase) GOGAT (glutamate synthase) as well as GS (glutamine synthetase) than those under WL. However, for more than 10 days under BL, the levels of these enzymes became lower than those of the seedlings under WL. Compared with BL or WL, RL was less effective on the primary nitrogen assimilation.  相似文献   

11.
Photomorphogenetic responses have been studied in a cucumber (Cucumis sativus L.) mutant (lh), which has long hypocotyls in white light (WL). While etiolated seedlings of this mutant have a similar phytochrome content and control of hypocotyl elongation as wild type, deetiolation is retarded and WL-grown seedlings show reduced phytochrome control. Spectrophotometric measurements exhibit that WL-grown tissues of the lh mutant (flower petals and Norflurazon-bleached leaves) contain 35 to 50% of the phytochrome level in the wild type. We propose that this is a consequence of a lack of light-stable phytochrome, in agreement with our hypothesis proposed on the basis of physiological experiments. The lh mutant lacks an end-of-day far-red light response of hypocotyl elongation. This enables the end-of-day far-red light response, clearly shown by the wild type, to be ascribed to the phytochrome, deficient in the lh mutant. Growth experiments in continuous blue light (BL) and continuous BL + red light (RL) show that when RL is added to BL, hypocotyl growth remains inhibited in the wild type, whereas the lh mutant exhibits significant growth promotion compared to BL alone. It is proposed that the hypocotyls fail to grow long in low fluence rate BL because photosynthesis is insufficient to sustain growth.  相似文献   

12.
The coordinate appearance of the bispecific NAD(P)H-nitrate reductase (NR; EC 1.6.6.2) and nitrite reductase (NiR; EC 1.7.7.1) was investigated in leaves and roots from European white birch seedlings (Betula pendula Roth). Induction by nitrate and light of both enzymes was analyzed by in vitro assays and by measuring NR- and NiR-encoding mRNA pools with homologous cDNAs as probes. When birch seedlings were grown on a medium containing ammonium as the sole nitrogen source, low constitutive expression of NR and NiR was observed in leaves, whereas only NiR was significantly expressed in roots. Upon transfer of the seedlings to a nitrate-containing medium, mRNA pools and activities of NR and NiR dramatically increased in leaves and roots, with a more rapid induction in leaves. Peak accumulations of mRNA pools preceded the maximum activities of NR and NiR, suggesting that the appearance of both activities can be mainly attributed to an increased expression of NR and NiR genes. Expression of NR was strictly light-dependent in leaves and roots and was repressed by ammonium in roots but not in leaves. In contrast with NR, constitutive expression of NiR was not affected by light, and even a slight induction following the addition of nitrate was found in the dark in roots but not in leaves. No effect of ammonium on NiR expression was detectable in both organs. In leaves as well as in roots, NiR was induced more rapidly than NR, which appears to be a safety measure to prevent nitrite accumulation.  相似文献   

13.
J J Casal 《Plant physiology》1996,112(3):965-973
We sought to determine if phytochrome B (phyB)-mediated responses to the red light (R)/far-red light (FR) ratio are affected by phytochrome A (phyA) activity in light-grown seedlings of Arabidopsis thaliana. Pulses of FR delayed into the dark period were less effective than end-of-day (EOD) FR in promoting hypocotyl growth over a given period in darkness. White light minus blue light interposed instead of darkness between the end of the white-light photoperiod and the FR pulse was sufficient to maintain responsivity to the decrease in phyB in FR-light-absorbing form in wild-type (WT) seedlings, but not in the phyA mutant. Compared with EOD R, hourly R+FR pulses provided throughout the night caused a stronger promotion of stem growth than a single EOD R+FR pulse in WT Arabidopsis, cucumber, mustard, sunflower, tobacco, and tomato, but not in phyA Arabidopsis or in the aurea mutant of tomato. WT seedlings of Arabidopsis responded to a range of high EOD R/FR ratios, whereas the phyA mutant required stronger reductions in the EOD R/FR ratio. In sunlight, phyA seedlings of Arabidopsis showed no response to the "early warning" signals of neighboring vegetation, and hypocotyl-growth promotion occurred at higher plant densities than in the WT. Thus, under a series of light conditions, the sensitivity or responsivity to reductions in the R/FR ratio were larger in WT than in phyA seedlings. A product of phyA is therefore proposed to enhance the hypocotyl-growth response to decreases in phyB in FR-light-absorbing form in light grown seedlings.  相似文献   

14.
15.
16.
Activities of nitrate reductase (NR; EC 1.6.6.1), nitrite reductase (NiR; EC 1.7.7.1), glutamine synthetase (GS; EC 6.3.1.2) and glutamate dehydrogenase (GDH; EC 1.4.1.3) were measured in cotyledons of sunflower (Helianthus annuus L. cv Peredovic) seedlings during germination and early growth under various external nitrogen sources. The presence of NO 3 - in the medium promoted a gradual increase in the levels of NR and NiR activities during the first 7 d of germination. Neither NR nor NiR activities were increased in a nitrogen-free medium or in media with either NH 4 + or urea as nitrogen sources. Moreover, the presence of NH 4 + did not abolish the NO 3 - -dependent appearance of NR and NiR activities. The increase of NR activity was impaired both by cycloheximide and chloramphenicol, which indicates that both cytoplasmic 80S and plastidic 70S ribosomes are involved in the synthesis of the NR molecule. By contrast, the appearance of NiR activity was only inhibited by cycloheximide, indicating that NiR seems to be exclusively synthesized on the cytoplasmic 80S ribosomes. Glutamine-synthetase activity was also strongly increased by external NO 3 - but not by NH 4 + or urea. The appearance of GS activity was more efficiently suppressed by cycloheximide than chloramphenicol. This indicates that GS is mostly synthesized in the cytoplasm. The cotyledons of the dry seed contain high levels of GDH activity which decline during germination independently of the presence or absence of a nitrogen source. Cycloheximide, but not chloramphenicol, greatly prevented the decrease of GDH activity.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - NiR nitrite reductase - NR nitrate reductase  相似文献   

17.
A comparison of the photoregulation of development has been made for etiolated and light-grown plants of wild-type (WT) tobacco (Nicotiana tabacun L.) and an isogenic transgenic line which expresses an introduced oat phytochrome gene (phyA) under the control of a constitutive viral promoter. Etiolated seedlings of both the WT and transgenic line showed irradiance-dependent inhibition of hypocotyl growth under continuous far-red (FR) light; transgenic seedlings showed a greater level of inhibition under a given fluence rate and this is considered to be the result of the heterologous phytochrome protein (PhyA) functioning in a compatible manner with the native etiolated phytochrome. Deetiolation of WT seedlings resulted in a loss of responsiveness to prolonged FR. Light-grown transgenic seedlings, however, continued to respond in an irradiance-dependent manner to prolonged FR and it is proposed that this is a specific function of the constitutive PhyA. Mature green plants of the WT and transgenic lines showed a qualitatively similar growth promotion to a brief end-of-day FR-treatment but this response was abolished in the transgenic plants under prolonged irradiation by this same FR source. Growth inhibition (McCormac et al. 1991, Planta 185, 162–170) and enhanced levels of nitrate-reductase activity under irradiance of low red:far-red ratio, as achieved by the FR-supplementation of white light, emphasised that the introduced PhyA was eliciting an aberrant mode of photoresponse compared with the normal phytochrome population of light-grown plants. Total levels of the oat-encoded phytochrome in the etiolated transgenic tobacco were shown to be influenced by the wavelength of continuous irradiation in a manner which was qualitatively similar to that seen for the native, etiolated tobacco phytochrome, and distinct from that seen in etiolated oat tissues. These results are discussed in terms of the proposal that the constitutive oat-PhyA pool in the transgenic plants leads to a persistence of a mode of response normally restricted to the situation in etiolated plants.Abbreviations FR far-red light - R red light - WL white light - WL + FR white light supplemented with FR - HIR high-irradiance response - PAR photosynthetically active radiation - Pr, Pfr R- and FR-absorbing forms of phytochrome - Ptot total phytochrome - phyA (PhyA) gene (encoded protein) for phytochrome - WT wild type This work was supported by an Agricultural and Food Research Council research grant to H.S. and A.M.; J.R. Cherry and R.D. Vierstra, (Department of Horticulture, University of Wisconsin-Madison, USA) are thanked for the provision of the transgenic tobacco line.  相似文献   

18.
Internode extension-growth responses to neighbouring plants and to red to far-red ratios (R:FR) were investigated in wild-type (WT) and aurea (au)-mutant seedlings of tomato grown under natural radiation. The genomic location of the au mutant is not known, but one of its consequences is the reduced phytochrome level. In WT seedlings, internode growth was promoted by the presence of non-shading neighbours reflecting far-red light (FR), the shade of a tall canopy, FR provided as a supplement during the photoperiod, and FR pulses either provided at the end of the day or delayed into the dark period. Supplementary FR during the photoperiod also promoted growth in herbicide-treated partially bleached WT seedlings. The au mutant showed higher background extension-growth rates, but only responded to the most severe treatments: deep shade light and very low R:FR at the end of the day, i.e. au-mutant seedlings were less sensitive than WT seedlings to R:FR signals. Wild-type seedlings were transferred from the glasshouse to a growth room and exposed to white light with two levels of phytochrome-absorbable radiation but similar phytochrome photoequilibria and radiation for photosynthesis. The plants exposed to the lowest level showed a transient increase of internode extension growth rate and a simultaneous reduction of response to FR pulses, i.e. reproduced some of the features of au-mutant seedlings. Phytochrome itself could set the degree of response to Pfr during neighbour detection.  相似文献   

19.
20.
Isozymes of both nitrate reductase (NR) and nitrite reductase(NiR) have been found in plant tissues, mainly after partialpurification. We have used starch gel electrophoresis to examineboth NR and NiR in crude extracts. Only one NR and one NiR enzymewere found in wheat tissues and no difference in mobilitiescould be detected between root and leaf enzymes. It was confirmedthat some tissues of corn have two NiR isozymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号