首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The O-polysaccharide (O-antigen) of Escherichia coli O19ab was studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear pentasaccharide repeating unit was established:→2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-l-Rhap-(1→2)-α-d-Glcp-(1→3)-α-d-GlcpNAc6Ac-(1→where the degree of O-acetylation of GlcNAc is ∼33%. The O-antigen gene cluster of E. coli O19ab was sequenced. The gene functions were tentatively assigned by comparison with sequences in the available databases and found to be in full agreement with the E. coli O19ab-antigen structure.  相似文献   

2.
大肠杆菌O11是一种可在人畜间交叉传染的强致病菌,具有潜在流行性爆发的危险。现完成了O11 O-抗原基因簇的破译,筛选和鉴定了多种特异分子标识,并实现了对大肠杆菌O11的快速、灵敏和准确的分子分型检测。利用鸟枪法测定大肠杆菌O11 O-抗原基因簇的序列全长为14180bp,生物信息学方法分析序列结构,共发现12个基因:GDP-L型岩藻糖合成途径基因(gmd,fcl,gmm,manC,manB)、UDP-N乙酰葡萄糖C4异构酶基因(gne)、O-抗原转运酶基因(wzx)、O-抗原聚合酶基因(wzy)和4个糖基转移酶基因;用PCR方法筛选出2个针对大肠杆菌O11的特异基因和4对特异引物,并进行环境样品检测实验鉴定了该PCR检测方法的灵敏度;设计并筛选出8条针对大肠杆菌O11的特异探针。  相似文献   

3.
AIM: To characterize the locus for O-antigen biosynthesis from Escherichia coli O172 type strain and to develop a rapid, specific and sensitive PCR-based method for identification and detection of E. coli O172. METHODS AND RESULTS: DNA of O-antigen gene cluster of E. coli O172 was amplified by long-range PCR method using primers based on housekeeping genes galF and gnd Shot gun bank was constructed and high quality sequencing was performed. The putative genes for synthesis of UDP-FucNAc, O-unit flippase, O-antigen polymerase and glycosyltransferases were assigned by the homology search. The evolutionary relationship between O-antigen gene clusters of E. coli O172 and E. coli O26 is shown by sequence comparison. Genes specific to E. coli O172 strains were identified by PCR assays using primers based on genes for O-unit flippase, O-antigen polymerase and glycosyltransferases. The specificity of PCR assays was tested using all E. coli and Shigella O-antigen type strains, as well as 24 clinical E. coli isolates. The sensitivity of PCR assays was determined, and the detection limits were 1 pg microl(-1) chromosomal DNA, 0.2 CFU g(-1) pork and 0.2 CFU ml(-1) water. The total time required from beginning to end of the procedure was within 16 h. CONCLUSION: The O-antigen gene cluster of E. coli O172 was identified and PCR assays based on O-antigen specific genes showed high specificity and sensitivity. SIGNIFICANCE AND IMPACT OF THE STUDY: An O-antigen gene cluster was identified by sequencing. The specific genes were determined for E. coli O172. The sensitivity of O-antigen specific PCR assay was tested. Although Shiga toxin-producing O172 strains were not yet isolated from clinical specimens, they may emerge as pathogens.  相似文献   

4.
Escherichia coli O55 is an important antigen which is often associated with enteropathogenic E. coli clones. We sequenced the genes responsible for its synthesis and identified genes for O-antigen polymerase, O-antigen flippase, four enzymes involved in GDP-colitose synthesis, and three glycosyltransferases, all by comparison with known genes. Upstream of the normal O-antigen region there is a gne gene, which encodes a UDP-GlcNAc epimerase for converting UDP-GlcNAc to UDP-GalNAc and is essential for O55 antigen synthesis. The O55 gne product has only 20 and 26% identity to the gne genes of Pseudomonas aeruginosa and E. coli O113, respectively. We also found evidence for the O55 gene cluster's having evolved from another gene cluster by gain and loss of genes. Only three of the GDP-colitose pathway genes are in the usual location, the other two being separated, although nearby. It is thought that the E. coli O157:H7 clone evolved from the O55:H7 clone in part by transfer of the O157 gene cluster into an O55 lineage. Comparison of genes flanking the O-antigen gene clusters of the O55:H7 and O157:H7 clones revealed one recombination site within the galF gene and located the other between the hisG and amn genes. Genes outside the recombination sites are 99.6 to 100% identical in the two clones, while most genes thought to have transferred with the O157 gene cluster are 95 to 98% identical.  相似文献   

5.
Characterization and sequence of the Escherichia coli panBCD gene cluster   总被引:2,自引:0,他引:2  
Abstract A metabolic key enzyme malate dehydrogenase (MDH) was purified from a deep-sea psychrophilic bacterium, Vibrio sp. strain no. 5710. The enzyme displayed an optimal activity shifted toward lower temperature and a pronounced heat lability. A gene encoding this enzyme was isolated and cloned. Recombinant Escherichia coli cells harboring the isolated clone expressed MDH activity with temperature stability identical to that of the parental psychrophile. Nucleotide sequencing of the gene revealed that its primary sequence was similar to that of a mesophile E. coli MDH (78% amino acid identity), for which the three-dimensional structure is known. The enzyme is thus suitable for the analysis of molecular adaptations to low temperatures.  相似文献   

6.
孔庆科  郭宏杰  赵广  郭玺  程剑松  王磊 《遗传学报》2004,31(12):1448-1454
对大肠杆菌O141 O-抗原基因簇进行测序,序列全长15601bp,用生物信息学的方法进行序列分析,共发现12个基因:鼠李糖合成酶基因(rmlB,rmlD,rmlA,rmlC)、甘露糖合成酶基因(manB,manC),糖基转移酶基因(orf6,orf7,orf9,orf10)、O-抗原转运酶基因(wzx)和O-抗原聚合酶基因(wzy)。用PCR的方法筛选出了针对大肠杆菌O141的特异基因,可以用于基因芯片或PCR方法对大肠杆菌O141的快速检测。通过对大肠杆菌O141的O-抗原基因簇及甘露糖和鼠李糖合成酶基因的进化分析发现:大肠杆菌O141 O-抗原基因簇是低GC含量的片段,仅O-抗原特异的基因才出现在O-抗原基因簇;并且这些基因可能介导了O-抗原基因簇间的重组及以O141 O-抗原基因簇的形成。  相似文献   

7.
The O antigen constitutes the outermost part of the lipopolysaccharide layer in Gram-negative bacteria. The chemical composition and structure of the O antigen show high levels of variation even within a single species revealing itself as serological diversity. Here, we present a complete sequence set for the O-antigen biosynthesis gene clusters (O-AGCs) from all 184 recognized Escherichia coli O serogroups. By comparing these sequences, we identified 161 well-defined O-AGCs. Based on the wzx/wzy or wzm/wzt gene sequences, in addition to 145 singletons, 37 serogroups were placed into 16 groups. Furthermore, phylogenetic analysis of all the E. coli O-serogroup reference strains revealed that the nearly one-quarter of the 184 serogroups were found in the ST10 lineage, which may have a unique genetic background allowing a more successful exchange of O-AGCs. Our data provide a complete view of the genetic diversity of O-AGCs in E. coli showing a stronger association between host phylogenetic lineage and O-serogroup diversification than previously recognized. These data will be a valuable basis for developing a systematic molecular O-typing scheme that will allow traditional typing approaches to be linked to genomic exploration of E. coli diversity.  相似文献   

8.
Structural studies of the Escherichia coli O78 O-antigen polysaccharide   总被引:1,自引:0,他引:1  
The structure of the O-antigen polysaccharide from Escherichia coli O78 has been investigated; methylation analysis, partial solvolysis with liquid hydrogen fluoride, and 2D-n.m.r. spectroscopy were the principal methods used. It is concluded that the polysaccharide is composed of tetrasaccharide repeating-units having the following structure.----3)-beta-D-GlcpNAc-(1----4)-beta-D-GlcpNAc- (1----4)-beta-D-Manp-(1----4)-alpha-D-Manp-(1----  相似文献   

9.
A structure of the O-polysaccharide (O-antigen) of Escherichia coli O158 has been reported (Datta, A. K.; Basu, S.; Roy, N. Carbohydr. Res.1999, 322, 219–227). In this work, we reinvestigated the O158 polysaccharide using sugar analyses, Smith degradation, and 1H and 13C NMR spectroscopy and established the following structure, which is at variance with the structure established earlier:This structure is in agreement with the predicted functions of genes found in the O-antigen gene cluster of E. coli O158.  相似文献   

10.
采用鸟枪法破译大肠杆菌O23标准株的O-抗原基因簇序列,并用生物信息学的方法进行了基因注释和分析;采用基因缺失和互补的方法鉴定了O23的UDP-GlcNAc C4异构酶(Gne);用同源建模的方法构建了O23 Gne的高级结构并对其活性位点进行了分析;分析了不同血清型大肠杆菌O-抗原基因簇中gne基因的多样性;根据O23O-抗原基因簇中的特异基因筛选出了可用于大肠杆菌O23快速检测的特异DNA序列。  相似文献   

11.
Escherichia coli O86:B7 has long been used as a model bacterial strain to study the generation of natural blood group antibody in humans, and it has been shown to possess high human blood B activity. The O-antigen structure of O86:B7 was solved recently in our laboratory. Comparison with the published structure of O86:H2 showed that both O86 subtypes shared the same O unit, yet each of the O antigens is polymerized from a different terminal sugar in a different glycosidic linkage. To determine the genetic basis for the O-antigen differences between the two O86 strains, we report the complete sequence of O86:B7 O-antigen gene cluster between galF and hisI, each gene was identified based on homology to other genes in the GenBank databases. Comparison of the two O86 O-antigen gene clusters revealed that the encoding regions between galF and gnd are identical, including wzy genes. However, deletion of the two wzy genes revealed that wzy in O86:B7 is responsible for the polymerization of the O antigen, while the deletion of wzy in O86:H2 has no effect on O-antigen biosynthesis. Therefore, we proposed that there must be another functional wzy gene outside the O86:H2 O-antigen gene cluster. Wzz proteins determine the degree of polymerization of the O antigen. When separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the lipopolysaccharide (LPS) of O86:B7 exhibited a modal distribution of LPS bands with relatively short O units attached to lipid A-core, which differs from the LPS pattern of O86:H2. We proved that the wzz genes are responsible for the different LPS patterns found in the two O86 subtypes, and we also showed that the very short type of LPS is responsible for the serum sensitivity of the O86:B7 strain.  相似文献   

12.
Escherichia coli K-12 has long been known not to produce an O antigen. We recently identified two independent mutations in different lineages of K-12 which had led to loss of O antigen synthesis (D. Liu and P. R. Reeves, Microbiology 140:49-57, 1994) and constructed a strain with all rfb (O antigen) genes intact which synthesized a variant of O antigen O16, giving cross-reaction with anti-O17 antibody. We determined the structure of this O antigen to be -->2)-beta-D-Galf-(1-->6)-alpha-D-Glcp- (1-->3)-alpha-L-Rhap-(1-->3)-alpha-D-GlcpNAc-(1-->, with an O-acetyl group on C-2 of the rhamnose and a side chain alpha-D-Glcp on C-6 of GlcNAc. O antigen synthesis is rfe dependent, and D-GlcpNAc is the first sugar of the biological repeat unit. We sequenced the rfb (O antigen) gene cluster and found 11 open reading frames. Four rhamnose pathway genes are identified by similarity to those of other strains, the rhamnose transferase gene is identified by assay of its product, and the identities of other genes are predicted with various degrees of confidence. We interpret earlier observations on interaction between the rfb region of Escherichia coli K-12 and those of E. coli O4 and E. coli Flexneri. All K-12 rfb genes were of low G+C content for E. coli. The rhamnose pathway genes were similar in sequence to those of (Shigella) Dysenteriae 1 and Flexneri, but the other genes showed distant or no similarity. We suggest that the K-12 gene cluster is a member of a family of rfb gene clusters, including those of Dysenteriae 1 and Flexneri, which evolved outside E. coli and was acquired by lateral gene transfer.  相似文献   

13.
FNR, the gene regulator of anaerobic respiratory genes of Escherichia coli is converted in vivo by O2 and by chelating agents to an inactive state. The interconversion process was studied in vivo in a strain with temperature controlled synthesis of FNR by measuring the expression of the frd (fumarate reductase) operon and the reactivity of FNR with the alkylating agent iodoacetic acid. FNR from aerobic bacteria is, after arresting FNR synthesis and shifting to anaerobic conditions, able to activate frd expression and behaves in the alkylation assay like anaerobic FNR. After shift from anaerobic to aerobic conditions, FNR no longer activates the expression of frd and reacts similar to aerobic FNR in the alkylation assay. The conversion of aerobic (inactive) to anaerobic (active) FNR occurs in the presence of chloramphenicol, an inhibitor of protein synthesis. Anaerobic FNR can also be converted post-translationally to inactive, metal-depleted FNR by growing the bacteria in the presence of chelating agents. The reverse is also possible by incubating metal-depleted bacteria with Fe2+. From the experiments it is concluded that the aerobic and the metal-depleted form of FNR can be transferred post-translationally and reversibly to the anaerobic (active) form. The response of FNR to changes in O2 supply therefore occurs at the FNR protein level in a reversible mode.Abbreviation BVred = reduced benzyl viologen  相似文献   

14.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O152 has been determined. Component analysis together with 1H, 13C and 31P NMR spectroscopy were used to elucidate the structure. Inter-residue correlations were determined by 1H,31P COSY, 1H,1H NOESY and 1H,13C heteronuclear multiple-bond correlation experiments. The PS is composed of pentasaccharide repeating units with the following structure: [structure: see text]. The structure is similar to that of the O-antigen polysaccharide from E. coli O173. The cross-reactivity between E. coli O152 and E. coli O3 may be explained by structural similarities in the branching region of their O-antigen polysaccharides.  相似文献   

15.
Escherichia coli O14:K7 is a rough strain, lacking a typical O antigen, in which the enterobacterial common antigen is attached to the lipopolysaccharide core. The rough phenotype was previously mapped to the O antigen gene cluster; however, the nature of the nonfunctional locus was not defined. In this study, we have shown that the O antigen gene cluster of an O14:K7 type strain (Su4411/41) was most likely deleted via homologous recombination between the GDP-mannose pathway genes (manB and manC) of the colanic acid and O antigen gene clusters. A similar recombination event has previously been inferred for the deletion of E. coli Sonnei chromosomal O antigen genes. Therefore, recombination between the GDP-mannose pathway genes provides a convenient mechanism for the deletion of O antigen genes, which may occur if the typical O antigen becomes redundant.  相似文献   

16.
The O-antigen polysaccharides of Klebsiella serotype O5 and Escherichia coli serotype O8 are serologically very similar or identical. The structures of these two polysaccharides have now been re-investigated. N.m.r. spectroscopy, chromium trioxide oxidation, hydrolysis with a specific phage enzyme, and f.a.b. mass spectrometry were the principal methods used. It is concluded that the O-antigen has the following structure, in which D-Man3Me is 3-O-methyl-D-mannose and n is approximately 10. (Formula: see text) Biosynthetic studies indicate that these antigens are synthesised by addition of D-mannopyranosyl groups to the "non-reducing" end of the mannan chain, and it seems possible that addition of a 3-O-methyl-D-mannopyranosyl group involves termination.  相似文献   

17.
An Escherichia coli gene responsive to heavy metals   总被引:2,自引:0,他引:2  
  相似文献   

18.
19.
Escherichia coli serogroup O103 has been associated with gastrointestinal illness and hemolytic uremic syndrome. To develop PCR-based methods for detection and identification of this serogroup, the DNA sequence of the 12,033-bp region containing the O antigen gene cluster of Escherichia coli O103 was determined. Of the 12 open reading frames identified, the E. coli O103 wzx (O antigen flippase) and wzy (O antigen polymerase) genes were selected as targets for development of both conventional and real-time PCR assays specific for this serogroup. In addition, a multiplex PCR targeting the Shiga toxin (Stx) 1 (stx1), Shiga toxin 2 (stx2), wzx, and wzy genes was developed to differentiate Stx-producing E. coli O103 from non-toxigenic strains. The PCR assays can be employed to identify E. coli serogroup O103, replacing antigen-based serotyping, and to potentially detect the organism in food, fecal, or environmental samples.  相似文献   

20.
Abstract Oxaloacetate decarboxylase from Klebsiella pneumoniae is a membrane bound sodium-pumping biotin enzyme. In electron microscopic samples, the enzyme particle appeared rod-like, with a length of about 12.9 nm and a width of about 7.4 nm, and with two submasses. Based on electron microscopic comparison of full-size enzyme molecules and free α-subunits, it is concluded that oxaloacetate decarboxylase contains only one α-subunit per enzyme particle. The α-subunit of the enzyme revealed a subdivision into two domains of different sizes forming a 'cleft'. Electron microscopic affinity labeling with avidin demonstrated that the biotin prosthetic group present on the α-subunit is located in this cleft, close to the complex formed by the β- and γ-subunits. The fact that 'pairs' but no higher specific aggregates could be observed after incubation with avidin, also indicates that only one copy of the α-subunit is present in an oxaloacetate decarboxylase particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号