首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Most models of sympatric speciation have assumed that assortative mating has no costs. A few studies, however, have shown that the costs for being choosy can prevent such speciation. Here, we investigate the role of the strength of assortment and of the costs for being choosy for a simple genetic model of a single ('magic') trait that mediates both intraspecific competition for a continuum of resources and assortative mating, which is induced by choosy females who preferentially mate with males of similar phenotype. Choosiness may be costly if it is difficult to find a mating partner. Such magic trait models are considered to be most conducive of sympatric speciation. We consider a sexually reproducing population of haploid individuals that is density regulated. The trait is determined by a single locus with multiple alleles. The strength of stabilizing selection (caused by a unimodal resource distribution), the strength of competition, the degree of assortment and the costs for being choosy are independent parameters. We investigate analytically and numerically how these parameters determine the equilibrium and stability structure. In particular, we identify conditions under which no polymorphism at all is maintained as well as conditions under which strong competitive divergence occurs, or the population even splits into two reproductively isolated classes of highly diverse phenotypes. If costs are absent or moderate, genetic variability tends to be minimized at intermediate strengths of assortment, and reproductively isolated classes of phenotypes are a likely result of evolution only for intermediate or strong competition and for very strong assortment. The likelihood of divergence depends relatively weakly on the costs as long as they are not high. With high costs, however, increasingly strong assortment rapidly depletes all genetic variation, and strong competitive divergence is prevented.  相似文献   

2.
Models of adaptive speciation are typically concerned with demonstrating that it is possible for ecologically driven disruptive selection to lead to the evolution of assortative mating and hence speciation. However, disruptive selection could also lead to other forms of evolutionary diversification, including ecological sexual dimorphisms. Using a model of frequency-dependent intraspecific competition, we show analytically that adaptive speciation and dimorphism require identical ecological conditions. Numerical simulations of individual-based models show that a single ecological model can produce either evolutionary outcome, depending on the genetic independence of male and female traits and the potential strength of assortative mating. Speciation is inhibited when the genetic basis of male and female ecological traits allows the sexes to diverge substantially. This is because sexual dimorphism, which can evolve quickly, can eliminate the frequency-dependent disruptive selection that would have provided the impetus for speciation. Conversely, populations with strong assortative mating based on ecological traits are less likely to evolve a sexual dimorphism because females cannot simultaneously prefer males more similar to themselves while still allowing the males to diverge. This conflict between speciation and dimorphism can be circumvented in two ways. First, we find a novel form of speciation via negative assortative mating, leading to two dimorphic daughter species. Second, if assortative mating is based on a neutral marker trait, trophic dimorphism and speciation by positive assortative mating can occur simultaneously. We conclude that while adaptive speciation and ecological sexual dimorphism may occur simultaneously, allowing for sexual dimorphism restricts the likelihood of adaptive speciation. Thus, it is important to recognize that disruptive selection due to frequency-dependent interactions can lead to more than one form of adaptive splitting.  相似文献   

3.
Abstract It has been shown theoretically that sympatric speciation can occur if intraspecific competition is strong enough to induce disruptive selection. However, the plausibility of the involved processes is under debate, and many questions on the conditions for speciation remain unresolved. For instance, is strong disruptive selection sufficient for speciation? Which roles do genetic architecture and initial composition of the population play? How strong must assortative mating be before a population can split in two? These are some of the issues we address here. We investigate a diploid multilocus model of a quantitative trait that is under frequency‐dependent selection caused by a balance of intraspecific competition and frequency‐independent stabilizing selection. This trait also acts as mating character for assortment. It has been established previously that speciation can occur only if competition is strong enough to induce disruptive selection. We find that speciation becomes more difficult for very strong competition, because then extremely strong assortment is required. Thus, speciation is most likely for intermediate strengths of competition, where it requires strong, but not extremely strong, assortment. For this range of parameters, however, it is not obvious how assortment can evolve from low to high levels, because with moderately strong assortment less genetic variation is maintained than under weak or strong assortment sometimes none at all. In addition to the strength of frequency‐dependent competition and assortative mating, the roles of the number of loci, the distribution of allelic effects, the initial conditions, costs to being choosy, the strength of stabilizing selection, and the particular choice of the fitness function are explored. A multitude of possible evolutionary outcomes is observed, including loss of all genetic variation, splitting in two to five species, as well as very short and extremely long stable limit cycles. On the methodological side, we propose quantitative measures for deciding whether a given distribution reflects two (or more) reproductively isolated clusters.  相似文献   

4.
Adaptive speciation occurs when frequency-dependent ecological interactions generate conditions of disruptive selection to which lineage splitting is an adaptive response. Under such selective conditions, evolution of assortative mating mechanisms enables the break-up of the ancestral lineage into diverging and reproductively isolated descendent species. Extending previous studies, I investigate models of adaptive speciation due to the evolution of indirect assortative mating that is based on three different mating traits: the degree of assortativity, a female preference trait and a male marker trait. For speciation to occur, linkage disequilibria between different mating traits, e.g. between female preference and male marker traits, as well as between mating traits and the ecological trait, must evolve. This can lead to novel speciation scenarios, e.g. when reproductive isolation is generated by a splitting in the degree of assortativeness, with one of the emerging lineages mating assortatively, and the other one disassortatively. I investigate the effects of variation in various model parameters on the likelihood of speciation, as well as robustness of speciation to introducing costs of assortative mating. Even though in the models presented speciation requires the genetic potential for strong assortment as well as rather restrictive ecological conditions, the results show that adaptive speciation due to the evolution of assortative mating when mate choice is based on separate female preference and male marker traits is a theoretically plausible evolutionary scenario.  相似文献   

5.
Understanding how reproductive barriers evolve during speciation remains an important question in evolution. Divergence in mating preferences may be a common first step in this process. The striking colour pattern diversity of strawberry dart frog (Dendrobates pumilio) populations has likely been shaped by sexual selection. Previous laboratory studies have shown that females attend to male coloration and prefer to court with males of their own colour, suggesting that divergent morphs may be reproductively isolated. To test this hypothesis, we used molecular data to estimate pedigree relationships from a polymorphic population. Whereas in the laboratory both red and yellow females preferred to court with males of their own phenotype, our pedigree shows a pattern of assortative mating only for red females. In the wild, yellow females appear to be less choosy about their mates, perhaps because they incur higher costs associated with searching than females of the more common red phenotype. We also used our pedigree to investigate the genetic basis for colour-pattern variation. The phenotype frequencies we observed were consistent with those expected if dorsal background coloration is controlled by a single locus, with complete dominance of red over yellow. Our results not only help clarify the role of sexual selection in reducing gene flow, but also shed light on the mechanisms underlying colour-pattern variation among sympatric colour morphs. The difference we observed between mating preferences measured under laboratory conditions and the pattern of mate choice observed in the wild highlight the importance of field studies for understanding behavioural reproductive isolation.  相似文献   

6.
Assortative mating is of interest because of its role in speciation and the maintenance of species boundaries. However, we know little about how within‐species assortment is related to interspecific sexual isolation. Most previous studies of assortative mating have focused on a single trait in males and females, rather than utilizing multivariate trait information. Here, we investigate how intraspecific assortative mating relates to sexual isolation in two sympatric and congeneric damselfly species (genus Calopteryx). We connect intraspecific assortment to interspecific sexual isolation by combining field observations, mate preference experiments, and enforced copulation experiments. Using canonical correlation analysis, we demonstrate multivariate intraspecific assortment for body size and body shape. Males of the smaller species mate more frequently with heterospecific females than males of the larger species, which showed less attraction to small heterospecific females. Field experiments suggest that sexual isolation asymmetry is caused by male preferences for large heterospecific females, rather than by mechanical isolation due to interspecific size differences or female preferences for large males. Male preferences for large females and male–male competition for high quality females can therefore counteract sexual isolation. This sexual isolation asymmetry indicates that sexual selection currently opposes a species boundary.  相似文献   

7.
Otto SP  Servedio MR  Nuismer SL 《Genetics》2008,179(4):2091-2112
A long-standing goal in evolutionary biology is to identify the conditions that promote the evolution of reproductive isolation and speciation. The factors promoting sympatric speciation have been of particular interest, both because it is notoriously difficult to prove empirically and because theoretical models have generated conflicting results, depending on the assumptions made. Here, we analyze the conditions under which selection favors the evolution of assortative mating, thereby reducing gene flow between sympatric groups, using a general model of selection, which allows fitness to be frequency dependent. Our analytical results are based on a two-locus diploid model, with one locus altering the trait under selection and the other locus controlling the strength of assortment (a "one-allele" model). Examining both equilibrium and nonequilibrium scenarios, we demonstrate that whenever heterozygotes are less fit, on average, than homozygotes at the trait locus, indirect selection for assortative mating is generated. While costs of assortative mating hinder the evolution of reproductive isolation, they do not prevent it unless they are sufficiently great. Assortative mating that arises because individuals mate within groups (formed in time or space) is most conducive to the evolution of complete assortative mating from random mating. Assortative mating based on female preferences is more restrictive, because the resulting sexual selection can lead to loss of the trait polymorphism and cause the relative fitness of heterozygotes to rise above homozygotes, eliminating the force favoring assortment. When assortative mating is already prevalent, however, sexual selection can itself cause low heterozygous fitness, promoting the evolution of complete reproductive isolation (akin to "reinforcement") regardless of the form of natural selection.  相似文献   

8.
A Fisherian model of sexual selection is combined with a diffusion model of mate dispersal to investigate the evolution of assortative mating in a sympatric population. Females mate with one of two types of polygynous males according to a male's display of one of two sex-limited, autosomal traits; these male traits may be associated with differential phenotypic mortalities. Through a Fisherian runaway process, female preferences and male traits can become associated in linkage disequilibrium, leading to patterns of assortative mating. Dispersing males, whose rate of movement is dependent on mating success, carry female preference genes with them, and displaced males thereby produce daughters with preference genes for their respective traits in locally higher than average frequencies. The reduced diffusion of the more preferred males permits the success of other male types in adjacent areas. Thus, mating-success dependent diffusion, when coupled with the rapid divergence in phenotypes possible under the Fisher process, can lead to the coexistence of two female preferences and two male traits in sympatry. We argue that many existing approaches to sympatric speciation fail to explain observed male polymorphisms because they exclude explicit spatial structure from their speciation models.  相似文献   

9.
Does male-biased predation lead to male scarcity in viviparous fish?   总被引:1,自引:0,他引:1  
Male predation risk due to ornaments seldom reduces female mating opportunities because males escape costs through alternative mating strategies and/or females cease to select for highly ornamented males. Males of the Amarillo fish Girardinichthys multiradiatus (Goodeidae) have large sexually selected fins that impair attack-avoidance manoeuvres. This fish was used to seek evidence that intersexual selection for handicapping traits can result in a deficit of acceptable mating partners. Also it was examined whether, under male scarcity, females remain choosy to the point of missing mating opportunities, and that they can exert effective control over matings, which is a pre-condition of effective female choice. It was found that snakes prey disproportionately on males, that it leads to female-biased sex ratios, and that highly ornamented males are more scarce after predation than males with small ornaments. Females can avoid being fertilized by unattractive males, and that missing one reproductive period can lead to infertility. Thus it appears that females have promoted the exaggeration of a male trait that increases predation risk, remain choosy even when acceptable males are scarce, and pay a large cost when missing mating opportunities. A prediction from these results is that females enjoy substantial fitness benefits from mating with highly ornamented males, which override the occasional fatal costs of refusing to mate with sub–optimal males. One potential consequence of female selectivity and control over matings when males are scarce may be a reduced capability to colonize new habitats.  相似文献   

10.
The evolution of assortative mating is a key component of the process of speciation with gene flow. Several recent theoretical studies have pointed out, however, that sexual selection which can result from assortative mating may cause it to plateau at an intermediate level; this is primarily owing to search costs of individuals with extreme phenotypes and to assortative preferences developed by individuals with intermediate phenotypes. I explore the limitations of assortative mating further by analysing a simple model in which these factors have been removed. Specifically, I use a haploid two-population model to ask whether the existence of assortative mating is sufficient to drive the further evolution of assortative mating. I find that a weakening in the effective strength of sexual selection with strong assortment leads to the existence of both a peak level of trait differentiation and the evolution of an intermediate level of assortative mating that will cause that peak. This result is robust to the inclusion of local adaptation and different genetic architecture of the trait. The results imply the existence of fundamental limits to the evolution of assortment via sexual selection in this situation, with which other factors, such as search costs, may interact.  相似文献   

11.
A two-locus haploid model of sexual selection is investigated to explore evolution of disassortative and assortative mating preferences based on imprinting. In this model, individuals imprint on a genetically transmitted trait during early ontogeny and choosy females later use those parental images as a criterion of mate choice. It is assumed that the presence or absence of the female preference is determined by a genetic locus. In order to incorporate such mechanisms as inbreeding depression and heterozygous advantage into our haploid framework, we assume that same-type matings are less fertile than different-type mating. The model suggests that: if all the females have a disassortative mating preference a viability-reducing trait may be maintained even without the fertility cost of same-type matings; a disassortative mating preference can be established even if it is initially rare, when there is a fertility cost of same-type matings. Further, an assortative mating preference is less likely to evolve than a disassortative mating preference. The model may be applicable to the evolution of MHC-disassortative mating preferences documented in house mice and humans.  相似文献   

12.
Hull  S. L. 《Hydrobiologia》1998,378(1-3):79-88
Size assortative mating is a common invertebrate mating pattern and is usually accompanied by male and female sexual selection, and these three behaviours can contribute to reproductive isolation. Two distinct populations of the marine prosobranch Littorina saxatilis, H and M, occur within 15 m of each other on the same shore. Previous studies have demonstrated that these two forms have different reproductive strategies and that the rare hybrids between the two forms show evidence of reproductive dysfunction and hence are less fit than the assumed parental forms. In both populations, female shell height was shown to be a predictor of the number of embryos contained within the brood pouch. The mean shell height of the M population was significantly larger than that of the H population, and the M population matures at a larger shell size than the H population. The two populations show complete assortative mating to type in the field, and occupy different microhabitats on the same shore. Therefore, laboratory-based experiments were performed to determine if assortative mating was maintained in sympatry and also to determine the effect of population density on mate choice. The males of both populations showed sexual selection for female size, choosing to mate with females approximately 10% larger than themselves from an assortment of female sizes. The M population showed complete assortative mating to type, irrespective of the density of H and M females, whereas at low densities the H males did occasionally mate with M females. The role of assortative mating and reinforcement (due to natural selection acting against the less fit hybrids), in maintaining the partial reproductive barrier between the two populations is discussed.  相似文献   

13.
邓顺  张友军 《昆虫知识》2009,46(1):17-26
从生物学、生态和遗传的角度阐述昆虫同域物种形成过程中涉及到的可能性机制。昆虫同域种的分化与作用于同域初始种群的歧化选择密切相关,歧化选择间接导致种群生态特征和遗传特征的分化,促进同域近缘种群间的生殖隔离。同域物种形成的过程中涉及到性状替换、性选择、同型交配等机制。寄主专化型多见于昆虫同域种的分化过程中,一般以植食性昆虫为主。有关昆虫同域物种形成的检验机制有多种,归纳起来主要包括同型交配的检验、遗传漂流的量化、遗传分化程度和连锁不平衡(LD)的检测、杂交后代适合度的估算等。目前发现在许多昆虫种类中存在同域物种形成的可能性,但是有关其隔离机制并没有得到充分的解释。  相似文献   

14.
Costs of sperm production may lead to prudence in male sperm allocation and also to male mate choice. Here, we develop a life history-based mutual mate choice model that takes into account the lost-opportunity costs for males from time out in sperm recovery and lets mate competition be determined by the prevailing mate choice strategies. We assume that high mating rate may potentially lead to sperm depletion in males, and that as a result, female reproduction may be limited by the availability of sperm. Increasing variation in male quality leads, in general, to increased selective mate choice by females, and vice versa. Lower-quality males may, however, gain access to more fecund higher-quality females by lowering their courting rate, thus increasing their sperm reserves. When faced with strong male competition for mates, low-quality males become less choosy, which leads to assortative mating for quality and an increased mating rate across all males. With assortative mating, the frequency of antagonistic interactions (sexual conflict) is reduced, allowing males to lower the time spent replenishing sperm reserves in order to increase mating rate. This in turn leads to lower sperm levels at mating and therefore could lead to negative effects on female fitness via sperm limitation.  相似文献   

15.
Assortative mating may split a population even in the absence of natural selection. Here, we study when this happens if mating depends on one or two quantitative traits. Not surprisingly, the modes of assortative mating that can cause sympatric speciation without selection are rather strict. However, some of them may occur in nature. Slow elimination of intermediate individuals caused by the gradual tightening of assortative mating, which evolves owing to relatively weak disruptive selection, provides the alternative scenario for sympatric speciation, in addition to fast elimination of intermediate individuals as a result of the direct action of strong disruptive selection under an invariant mode of assortative mating. Even when assortative mating alone cannot split an initially coherent population, it may be able to prevent the merging of species after their secondary contact.  相似文献   

16.
PERSPECTIVE: MODELS OF SPECIATION: WHAT HAVE WE LEARNED IN 40 YEARS?   总被引:11,自引:0,他引:11  
Theoretical studies of speciation have been dominated by numerical simulations aiming to demonstrate that speciation in a certain scenario may occur. What is needed now is a shift in focus to identifying more general rules and patterns in the dynamics of speciation. The crucial step in achieving this goal is the development of simple and general dynamical models that can be studied not only numerically but analytically as well. I review some of the existing analytical results on speciation. I first show why the classical theories of speciation by peak shifts across adaptive valleys driven by random genetic drift run into trouble (and into what kind of trouble). Then I describe the Bateson-Dobzhansky-Muller (BDM) model of speciation that does not require overcoming selection. I describe exactly how the probability of speciation, the average waiting time to speciation, and the average duration of speciation depend on the mutation and migration rates, population size, and selection for local adaptation. The BDM model postulates a rather specific genetic architecture of reproductive isolation. I then show exactly why the genetic architecture required by the BDM model should be common in general. Next I consider the multilocus generalizations of the BDM model again concentrating on the qualitative characteristics of speciation such as the average waiting time to speciation and the average duration of speciation. Finally, I consider two models of sympatric speciation in which the conditions for sympatric speciation were found analytically. A number of important conclusions have emerged from analytical studies. Unless the population size is small and the adaptive valley is shallow, the waiting time to a stochastic transition between the adaptive peaks is extremely long. However, if transition does happen, it is very quick. Speciation can occur by mutation and random drift alone with no contribution from selection as different populations accumulate incompatible genes. The importance of mutations and drift in speciation is augmented by the general structure of adaptive landscapes. Speciation can be understood as the divergence along nearly neutral networks and holey adaptive landscapes (driven by mutation, drift, and selection for adaptation to a local biotic and/or abiotic environment) accompanied by the accumulation of reproductive isolation as a by-product. The waiting time to speciation driven by mutation and drift is typically very long. Selection for local adaptation (either acting directly on the loci underlying reproductive isolation via their pleiotropic effects or acting indirectly via establishing a genetic barrier to gene flow) can significantly decrease the waiting time to speciation. In the parapatric case the average actual duration of speciation is much shorter than the average waiting time to speciation. Speciation is expected to be triggered by changes in the environment. Once genetic changes underlying speciation start, they go to completion very rapidly. Sympatric speciation is possible if disruptive selection and/or assortativeness in mating are strong enough. Sympatric speciation is promoted if costs of being choosy are small (or absent) and if linkage between the loci experiencing disruptive selection and those controlling assortative mating is strong.  相似文献   

17.
Sexual conflict has been proposed to be a mediator of speciation but recent theoretical work, as well as empirical studies, suggests that sexual conflict may also be able to prevent speciation and to preserve genetic polymorphism within a species. Here, we develop a population genetic model and study the effects of sexual conflict in a polymorphic population. The morphs mate assortatively based on different sexually antagonistic traits and females are assumed to suffer a cost when the proportion of matching males is high. We consider the model in two different mating systems; promiscuity and polygyny. Our results show that genetic polymorphism may be maintained through negative frequency dependent selection established by assortative mating and female conflict costs. However, the outcome significantly differs between mating systems. Furthermore, we show that indirect selection may have profound effects on the evolutionary dynamics of a sexual conflict.  相似文献   

18.
While the feasibility of bottleneck-induced speciation is in doubt, population bottlenecks may still affect the speciation process by interacting with divergent selection. To explore this possibility, I conducted a laboratory speciation experiment using Drosophila pseudoobscura involving 78 replicate populations assigned in a two-way factorial design to both bottleneck (present vs. absent) and environment (ancestral vs. novel) treatments. Populations independently evolved under these treatments and were then tested for assortative mating and male mating success against their common ancestor. Bottlenecks alone did not generate any premating isolation, despite an experimental design that was conducive to bottleneck-induced speciation. Premating isolation also did not evolve in the novel environment treatment, neither in the presence nor absence of bottlenecks. However, male mating success was significantly reduced in the novel environment treatment, both as a plastic response to this environment and as a result of environment-dependent inbreeding effects in the bottlenecked populations. Reduced mating success of derived males will hamper speciation by enhancing the mating success of immigrant, ancestral males. Novel environments are generally thought to promote ecological speciation by generating divergent natural selection. In the current experiment, however, the novel environment did not cause the evolution of any premating isolation and it reduced the likelihood of speciation through its effects on male mating success.  相似文献   

19.
Mate choice and mate competition can both influence the evolution of sexual isolation between populations. Assortative mating may arise if traits and preferences diverge in step, and, alternatively, mate competition may counteract mating preferences and decrease assortative mating. Here, we examine potential assortative mating between populations of Drosophila pseudoobscura that have experimentally evolved under either increased (‘polyandry’) or decreased (‘monogamy’) sexual selection intensity for 100 generations. These populations have evolved differences in numerous traits, including a male signal and female preference traits. We use a two males: one female design, allowing both mate choice and competition to influence mating outcomes, to test for assortative mating between our populations. Mating latency shows subtle effects of male and female interactions, with females from the monogamous populations appearing reluctant to mate with males from the polyandrous populations. However, males from the polyandrous populations have a significantly higher probability of mating regardless of the female's population. Our results suggest that if populations differ in the intensity of sexual selection, effects on mate competition may overcome mate choice.  相似文献   

20.
Speciation with gene flow may be driven by a combination of positive assortative mating and disruptive selection, particularly if selection and assortative mating act on the same trait, eliminating recombination between ecotype and mating type. Phenotypically unimodal populations of threespine stickleback (Gasterosteus aculeatus) are commonly subject to disruptive selection due to competition for alternate prey. Here we present evidence that stickleback also exhibit assortative mating by diet. Among-individual diet variation leads to variation in stable isotopes, which reflect prey use. We find a significant correlation between the isotopes of males and eggs within their nests. Because egg isotopes are derived from females, this correlation reflects assortative mating between males and females by diet. In concert with disruptive selection, this assortative mating should facilitate divergence. However, the stickleback population remains phenotypically unimodal, highlighting the fact that assortative mating and disruptive selection do not guarantee evolutionary divergence and speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号