首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Body composition in birds was evaluated indirectly by 18O and 2H dilution. Body composition was determined by whole-body chemical analysis of eight adult roosters (Gallus gallus). In vivo measurements of total body water (TBW) were carried out using doubly labeled water (2H2 18O). Estimated dilution spaces using both the plateau and intercept approaches were compared with the results obtained by carcass lyophilization. Both 18O and 2H slightly overestimated TBW compared with the results obtained by lyophilization, by 2.2%+/-1.9% and 5.7%+/-0.2%, respectively; both differences were statistically significant (P<0.01). The difference between these isotope estimations was significant (P<0.001). However, isotope dilution spaces and TBW were highly correlated. There was a strong inverse relationship between total body fat and TBW percentages (r2=0.98, P<0.0001). The relation between TBW and body protein was significant. Water content in lean body mass (72.8%) obtained in our study was very close to that reported in mammals, demonstrating no fundamental difference in tissue water content between birds and mammals. Estimated body fat and protein values from isotopic dilution did not significantly differ from values obtained by direct chemical analysis (P>0.05), except for body fat in the Pace and Rathbun approach (Table 3). Although estimation of TBW and body composition by isotope dilution is time consuming and expensive, deuterium offers a reliable and low-cost alternative compared with 18O. The advantage of in vivo estimation of TBW with isotopic dilution in combination with the regression approach is that it permits repeated measurements of body composition on the same birds under laboratory and free-living conditions.  相似文献   

2.
We compared carcass analysis and hydrogen isotope dilution methods to measure total body water (TBW) and body composition in a small altricial carnivore, the mink. Dilution space (D) of mink at 21-42 days of age (n=20), was determined after subcutaneous administration of tritiated water. The same animals were then used to determine TBW and body composition by carcass analysis and to derive predictive empirical relationships between TBW and total body fat, protein and energy. A separate validation set of 27 kits was used to test the accuracy of predicting body composition from TBW. D overestimated TBW by a consistent and predictable 4.1% (R(2)=0.999, P<0.001). Our estimates of fat, protein and energy content, using equations derived from TBW, were not significantly different than those obtained from direct carcass analysis (P>0.980) in either the initial or validation set of mink. TBW was shown to decrease from 81 to 76% and total body protein to increase from 14 to 19% of LBM of the kits from 21 to 42 days of age. Although a rapidly changing hydration state was apparent in neonates, we conclude that when this is taken into account, accurate estimates of body composition can be obtained from hydrogen isotope dilution.  相似文献   

3.
Morphometrics and isotope-labelled water were used to determine body composition [total body water, total body fat and fat-free mass (FFM)] of three captive female olive baboons (Papio anubis). Mean mass was 16.5 kg, comparable with other captive settings but heavier than wild olive baboons. Average water content was 66%; FFM averaged 90.5%. Baboon females have less body fat than human counterparts. Compared with captive or wild baboons, these females were adequately nourished for their energy expenditure. A positive association between total mass and FFM existed, but due to the small sample no general relationship was observed for body fat or FFM and condition or size measures. The kinetics of deuterium equilibration in body fluids for baboons was determined as 3-4 hours after injection, similar to that for humans. Deuterium dilution technique appears to be an appropriate method for studying body composition in baboons, although a larger sample is needed for relationships between morphometric indices and body composition.  相似文献   

4.
To determine the relationship between total body water (TBW) fraction and local water content measured in the skin (SW) this study assessed eight anesthetized piglets in an overhydration model. TBW was assessed by deuterium oxide dilution and body mass measurements taken throughout the experiments, and by whole body carcass analysis at the end of each experiment. Additionally, extracellular water and plasma volume were assessed using bromide dilution and Evan's blue dilution, respectively. SW was assessed by tissue biopsies taken at 60-min intervals throughout the experiment. Lean body water (LBW) fraction and lean skin water (LSW) fraction were assessed by extracting the fat from the carcass and biopsy samples. A correlation does exist between TBW fraction and SW fraction with r2=0.58 (P<0.05); however, the strongest correlation occurred between the LBW fraction and LSW fraction with r2=0.87 (P<0.05) and an SE of prediction of 0.77%. These data demonstrate that LSW gives an accurate and precise estimate of LBW and could therefore be used to determine the hydration index in appropriate research settings.  相似文献   

5.
An update of practical aspects of the use of labeled water for the measurement of total body water (TBW) and energy expenditure (EE) is presented as applied in Maastricht, The Netherlands. We use a 10-hour equilibration period. The isotopes for the measurement of TBW and EE are routinely administered, after collecting a background urine sample, as a last consumption before the night. Our data show an underestimate of TBW measured with isotope dilution after 4 hours (in the morning), a discrepancy which increases with the size of TBW. No such relation and no significant differences were found after 10-hour (overnight) equilibration. The ratio between the dilution space for deuterium and oxygen-18 is higher than the earlier figure of 1.03, especially in adult subjects with a high body fat content. For an observation period of EE over two weeks, samples from the second and the last voiding on the first, mid, and last day of the observation period are collected. Differences in EE calculated from morning and evening samples within the first and second week allow detection of sampling errors and if so, samples are excluded from the final calculation. Differences of EE between weeks 1 and 2 allow a check for the consistency of the subjects' physical activity level and usually fall within 10% of the average EE over the total observation interval.  相似文献   

6.

Background

Bioelectrical impedance analysis (BIA) is a potentially valuable method for assessing lean mass and body fat levels in children from different ethnic groups. We examined the need for ethnic- and gender-specific equations for estimating fat free mass (FFM) from BIA in children from different ethnic groups and examined their effects on the assessment of ethnic differences in body fat.

Methods

Cross-sectional study of children aged 8–10 years in London Primary schools including 325 South Asians, 250 black African-Caribbeans and 289 white Europeans with measurements of height, weight and arm-leg impedance (Z; Bodystat 1500). Total body water was estimated from deuterium dilution and converted to FFM. Multilevel models were used to derive three types of equation {A: FFM = linear combination(height+weight+Z); B: FFM = linear combination(height2/Z); C: FFM = linear combination(height2/Z+weight)}.

Results

Ethnicity and gender were important predictors of FFM and improved model fit in all equations. The models of best fit were ethnicity and gender specific versions of equation A, followed by equation C; these provided accurate assessments of ethnic differences in FFM and FM. In contrast, the use of generic equations led to underestimation of both the negative South Asian-white European FFM difference and the positive black African-Caribbean-white European FFM difference (by 0.53 kg and by 0.73 kg respectively for equation A). The use of generic equations underestimated the positive South Asian-white European difference in fat mass (FM) and overestimated the positive black African-Caribbean-white European difference in FM (by 4.7% and 10.1% respectively for equation A). Consistent results were observed when the equations were applied to a large external data set.

Conclusions

Ethnic- and gender-specific equations for predicting FFM from BIA provide better estimates of ethnic differences in FFM and FM in children, while generic equations can misrepresent these ethnic differences.  相似文献   

7.
Objective: To develop a model based on empirical data and human energetics to predict the total energy cost of weight gain and obligatory increase in energy intake and/or decrease in physical activity level associated with weight gain in children and adolescents. Research Methods and Procedures: One‐year changes in weight and body composition and basal metabolic rate (BMR) were measured in 488 Hispanic children and adolescents. Fat‐free mass (FFM) and fat mass (FM) were measured by DXA and BMR by calorimetry. Model specifications include the following: body mass (BM) = FFM + FM, each with a specific energy content, cff (1.07 kcal/g FFM) and cf (9.25 kcal/g FM), basal energy expenditure (EE), kff and kf, and energetic conversion efficiency, eff (0.42) for FFM and ef (0.85) for FM. Total energy cost of weight gain is equal to the sum of energy storage, EE associated with increased BM, conversion energy (CE), and diet‐induced EE (DIEE). Results: Sex‐ and Tanner stage–specific values are indicated for the basal EE of FFM (kff) and the fat fraction in added tissue (fr). Total energy cost of weight gain is partitioned into energy storage (24% to 36%), increase in EE (40% to 57%), CE (8% to 13%), and DIEE (10%). Observed median (10th to 90th percentile) weight gain of 6.1 kg/yr (2.4 to 11.4 kg/yr) corresponds at physical activity level (PAL) = 1.5, 1.75, and 2.0 to a total energy cost of weight gain of 244 (93 to 448 kcal/d), 267 (101 to 485 kcal/d), and 290 kcal/d (110 to 527 kcal/d), respectively, and to a total energy intake of 2695 (1890 to 3730), 3127 (2191 to 4335), and 3551 (2487 to 4930) kcal/d, respectively. If weight gain is caused by a change in PAL alone and PAL0 = 1.5 at baseline t = 0, the model indicates a drop in PAL of 0.22 (0.08 to 0.34) units, which is equivalent to 60 (18 to 105) min/d of walking at 2.5 mph. Discussion: Halting the development or progression of childhood obesity, as observed in these Hispanic children and adolescents, by counteracting its total energy costs will require a sizable decrease in energy intake and/or reciprocal increase in physical activity.  相似文献   

8.
Decrease in fat mass (FM) is a one of the aims of pediatric obesity treatment; however, measurement techniques suitable for routine clinical assessment are lacking. The objective of this study was to validate whole‐body bioelectrical impedance analysis (BIA; TANITA BC‐418MA) against the three‐component (3C) model of body composition in obese children and adolescents, and to test the accuracy of our new equations in an independent sample studied longitudinally. A total of 77 white obese subjects (30 males) aged 5–22 years, BMI‐standard deviation score (SDS) 1.6–3.9, had measurements of weight, height (HT), body volume, total body water (TBW), and impedance (Z). FM and fat‐free mass (FFM) were calculated using the 3C model or predicted from TANITA. FFM was predicted from HT2/Z. This equation was then evaluated in 17 other obese children (5 males) aged 9–13 years. Compared to the 3C model, TANITA manufacturer's equations overestimated FFM by 2.7 kg (P < 0.001). We derived a new equation: FFM = ?2.211 + 1.115 (HT2/Z), with r2 of 0.96, standard error of the estimate 2.3 kg. Use of this equation in the independent sample showed no significant bias in FM or FFM (mean bias 0.5 ± 2.4 kg; P = 0.4), and no significant bias in change in FM or FFM (mean bias 0.2 ± 1.8 kg; P = 0.7), accounting for 58% (P < 0.001) and 55% (P = 0.001) of the change in FM and FFM, respectively. Our derived BIA equation, shown to be reliable for longitudinal assessment in white obese children, will aid routine clinical monitoring of body composition in this population.  相似文献   

9.
Bioelectrical impedance analysis (BIA) is a convenient, inexpensive, and noninvasive technique for measuring body composition. BIA has been strongly correlated with total body water (TBW) and also has been validated against hydrodensitometry (HD). The accuracy and clinical utility of BIA and HD during periods of substantial weight loss remain controversial. We measured body composition in moderately and severely obese patients serially using both methods during a very-low-energy diet (VLED). Mean initial weight in these patients was 116 (± 30) kg (range, 74–196 kg). Mean weight loss was 24 (± 13) kg with a decrease in fat mass (FM) by HD of 20 kg (p<0.001) and a decrease in fat-free mass (FFM) of 3.6 kg (p<0.05). Loss of FFM is best predicted by the rate (kg/wk) of weight loss (r2 = 0.86, p<0.0001). FFM, as predicted from BIA equations, was highly correlated with FFM as estimated by HD during all testing sessions (r=0.92-0.98). Although highly correlated, BIA overestimated FFM relative to HD and this difference appeared to be more pronounced for taller patients with greater truncal obesity. Although the discrepancy was no greater during weight-loss treatment, the level of disagreement was considerable. Therefore, the two methods cannot be used interchangeably to monitor relative changes in body composition in patients with obesity during treatment with VLED. The discrepancy between BIA and HD may be caused by body mass distribution considerations and by perturbations in TBW which affect the hydration quotient for FFM (BIA) and/or which affect the density constants for FFM and FM (HD).  相似文献   

10.
The ability to accurately estimate fat mass and fat-free mass (FFM) has the potential to improve the way in which sow body condition can be managed in a breeding herd. Bioelectrical impedance spectroscopy (BIS) has been evaluated as a practical technique for assessment of body composition in several livestock species, but similar work is lacking in sows. Bioelectrical impedance uses population-specific algorithms that require values for the apparent resistivities of body fluids and body proportion factors. This study comprised three major aims: (i) to derive apparent resistivity coefficients for extracellular water (ECW) and intracellular water (ICW) required for validation of BIS predictions of total body water (TBW) in live sows against standard reference tracer dilution methods; (ii) to develop predictions of TBW to body composition prediction algorithms, namely FFM, by developing a body geometry correction factor (Kb) and (iii) to compare the BIS predictions of FFM against existing impedance predictors and published prediction equations for use in sows, based on physical measurements of back-fat depth and BW (P2-based predictors). Whole body impedance measurements and the determination of TBW by deuterium dilution and ECW by bromide dilution were performed on 40 Large White x Landrace sows. Mean apparent resistivity coefficients of body fluids were 431.1 Ω.cm for ECW and 1827.8 Ω.cm for ICW. Using these coefficients, TBW and ECW were over-estimated by 6.5 and 3.3%, respectively, compared to measured reference values, although these differences were not statistically different (P > 0.05). Mean Kb was 1.09 ± 0.14. Fat-free mass predictions were 194.9 kg, which equates to 60.9% of total sow weight, and 183.0 kg for BIS and the deuterium dilution method, respectively. Mean differences between the predicted and measured FFM values ranged from − 8.2 to 32.7%, but were not statistically different (P > 0.05). Method validation (leave-one-out procedure) revealed that mean differences between predicted and measured values were not statistically significant (P > 0.05). Of the impedance-based predictors, equivalence testing revealed that BIS displayed the lowest test bias of 11.9 kg (8.2%), although the P2-based prediction equations exhibited the lowest bias and percentage equivalence, with narrow limits of agreement. Results indicate although differences between mean predicted and measured values were not significantly different, relatively wide limits of agreement suggest BIS as an impractical option for assessing body composition in individual sows compared to the use of existing prediction equations based on BW and back fat.  相似文献   

11.
The effectiveness of caloric restriction (CR) as a treatment for obesity varies considerably between individuals. Reasons for this interindividual variation in weight loss in response to CR may lie in pre-existing individual differences and/or individual differences in compensatory responses. Here we studied the responses of 127 MF1 mice to 30% CR over four weeks, and investigated whether pre-existing differences or compensatory changes in body temperature, resting metabolic rate (RMR) and behavior explained the variation observed in body mass (BM) and fat mass (FM) changes. Mice showed considerable variation in BM loss (36-1%), and in the type of tissue lost (FM or fat free mass, FFM). About 50% of the variation in BM and FM loss could be predicted by pre-existing differences in food intake, RMR, and general activity, where BM loss was greater when food intake was lower and activity and RMR were higher. Compensatory changes in activity and body temperature together explained ~50% of the variation in BM and FM loss in both sexes. In models incorporating baseline variables and compensatory changes, food intake, and activity were the strongest predictors of weight loss in both sexes; i.e., lower baseline food intake and increased changes in activity resulted in greater BM and FM loss. Interestingly, increased baseline activity was a significant predictor of weight loss independent of compensatory changes in activity. Identifying factors involved in individual variability in weight loss may give insights into the mechanisms that underlie this variability, and is important to develop individually tailored weight-management strategies.  相似文献   

12.
Total body water (TBW) volumes determined from the dilution space of injected tritiated water have consistently overestimated actual water volumes (determined by desiccation to constant mass) in reptiles and mammals, but results for birds are controversial. We investigated potential errors in both the dilution method and the desiccation method in an attempt to resolve this controversy. Tritiated water dilution yielded an accurate measurement of water mass in vitro. However, in vivo, this method yielded a 4.6% overestimate of the amount of water (3.1% of live body mass) in chukar partridges, apparently largely because of loss of tritium from body water to sites of dissociable hydrogens on body solids. An additional source of overestimation (approximately 2% of body mass) was loss of tritium to the solids in blood samples during distillation of blood to obtain pure water for tritium analysis. Measuring tritium activity in plasma samples avoided this problem but required measurement of, and correction for, the dry matter content in plasma. Desiccation to constant mass by lyophilization or oven-drying also overestimated the amount of water actually in the bodies of chukar partridges by 1.4% of body mass, because these values included water adsorbed onto the outside of feathers. When desiccating defeathered carcasses, oven-drying at 70 degrees C yielded TBW values identical to those obtained from lyophilization, but TBW was overestimated (0.5% of body mass) by drying at 100 degrees C due to loss of organic substances as well as water.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study determined the feasibility of using bioelectrical impedance analysis (BIA) to assess body composition alterations associated with body weight (BW) loss at high altitude. The BIA method was also evaluated relative to anthropometric assessments. Height, BW, BIA, skinfold (SF, 6 sites), and circumference (CIR, 5 sites) measurements were obtained from 16 males (23-35 yr) before, during, and after 16 days of residence at 3,700-4,300 m. Hydrostatic weighings (HW) were performed pre- and postaltitude. Results of 13 previously derived prediction equations using various combinations of height, BW, age, BIA, SF, or CIR measurements as independent variables to predict fat-free mass (FFM), fat mass (FM), and percent body fat (%Fat) were compared with HW. Mean BW decreased from 84.74 to 78.84 kg (P less than 0.01). As determined by HW, FFM decreased by 2.44 kg (P less than 0.01), FM by 3.46 kg (P less than 0.01), and %Fat by 3.02% (P less than 0.01). The BIA and SF methods overestimated the loss in FFM and underestimated the losses in FM and %Fat (P less than 0.01). Only the equations utilizing the CIR measurements did not differ from HW values for changes in FFM, FM, and %Fat. It was concluded that the BIA and SF methods were not acceptable for assessing body composition changes at altitude.  相似文献   

14.
Fat mass deposition during pregnancy using a four-component model.   总被引:1,自引:0,他引:1  
Estimates of body fat mass gained during human pregnancy are necessary to assess the composition of gestational weight gained and in studying energy requirements of reproduction. However, commonly used methods of measuring body composition are not valid during pregnancy. We used measurements of total body water (TBW), body density, and bone mineral content (BMC) to apply a four-component model to measure body fat gained in nine pregnant women. Measurements were made longitudinally from before conception; at 8-10, 24-26, and 34-36 wk gestation; and at 4-6 wk postpartum. TBW was measured by deuterium dilution, body density by hydrodensitometry, and BMC by dual-energy X-ray absorptiometry. Body protein was estimated by subtracting TBW and BMC from fat-free mass. By 36 wk of gestation, body weight increased 11.2 +/- 4.4 kg, TBW increased 5.6 +/- 3.3 kg, fat-free mass increased 6.5 +/- 3.4 kg, and fat mass increased 4.1 +/- 3.5 kg. The estimated energy cost of fat mass gained averaged 44,608 kcal (95% confidence interval, -31, 552-120,768 kcal). The large variability in the composition of gestational weight gained among the women was not explained by prepregnancy body composition or by energy intake. This variability makes it impossible to derive a single value for the energy cost of fat deposition to use in estimating the energy requirement of pregnancy.  相似文献   

15.
We sought to determine if decrements in the mass of fat-free body mass (FFM) and other lean tissue compartments, and related changes in protein metabolism, are appropriate for weight loss in obese older women. Subjects were 14 healthy weight-stable obese (BMI > or =30 kg/m(2)) postmenopausal women >55 yr who participated in a 16-wk, 1, 200 kcal/day nutritionally complete diet. Measures at baseline and 16 wk included FFM and appendicular lean soft tissue (LST) by dual-energy X-ray absorptiometry; body cell mass (BCM) by (40)K whole body counting; total body water (TBW) by tritium dilution; skeletal muscle (SM) by whole body MRI; and fasting whole body protein metabolism through L-[1-(13)C]leucine kinetics. Mean weight loss (+/-SD) was 9.6+/-3.0 kg (P<0.0001) or 10.7% of initial body weight. FFM decreased by 2.1+/-2.6 kg (P = 0.006), or 19.5% of weight loss, and did not differ from that reported (2.3+/-0.7 kg). Relative losses of SM, LST, TBW, and BCM were consistent with reductions in body weight and FFM. Changes in [(13)C]leucine flux, oxidation, and synthesis rates were not significant. Follow-up of 11 subjects at 23.7 +/-5.7 mo showed body weight and fat mass to be below baseline values; FFM was nonsignificantly reduced. Weight loss was accompanied by body composition and protein kinetic changes that appear appropriate for the magnitude of body mass change, thus failing to support the concern that diet-induced weight loss in obese postmenopausal women produces disproportionate LST losses.  相似文献   

16.
Objectives: To compare physical activity levels (PALs) of free‐living adults with chronic paraplegia with World Health Organization recommendations and to compare energy expenditure between persons with complete vs. incomplete paraplegia. Research Methods and Procedures: Twenty‐seven euthyroid adults (17 men and 10 women) with paraplegia (12.5 ± 9.5 years since onset; 17 with complete lesions and 10 with incomplete lesions) participated in this cross‐sectional study. Resting metabolic rate was measured by indirect calorimetry and total daily energy expenditure (TDEE) by heart rate monitoring. PAL was calculated as TDEE/resting metabolic rate. Total body water was measured by deuterium dilution and fat‐free mass (FFM) and fat mass (FM) by calculation (FFM = total body water/0.732; FM = weight ? FFM). Obesity was defined using the following percentage FM cutoffs: men 18 to 40 years >22% and 41 to 60 years >25%; and women 18 to 40 years >35% and 41 to 60 years >38%. Results: Nineteen subjects (70.4%; 13 men and six women) were obese. Fifteen subjects (56%) engaged in structured physical activity 1.46 ± 0.85 times during the observation period for a mean of 49.4 ± 31.0 minutes per session. Despite this, mean PAL of the group was 1.56 ± 0.34, indicative of limited physical activity. TDEE was 24.6% lower in subjects with complete paraplegia (2072 ± 505 vs. 2582 ± 852 kcal/d, p = 0.0372). Discussion: PAL of the group was low, indicating that persons with paraplegia need to engage in increased frequency, intensity, and/or duration of structured physical activity to achieve a PAL ≥1.75 and, thereby, to offset sedentary activities of daily living.  相似文献   

17.
Quantitative nuclear magnetic resonance (QMR) is being used in human adults to obtain measures of total body fat mass (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH). Body composition of 113 infants and children (3.3-49.9 kg) was assessed using dual-energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP, PeaPod for infants ≤ 8 kg and BodPod for children ≥ 6 years) and QMR. Results were compared with the deuterium oxide dilution technique (D(2)O) and a four-compartment model (4-C). The percentages of compliance were: 98% QMR; 75% DXA; 94% BodPod; and 95% PeaPod. Although QMR precision was high (coefficient of variation = 1.42%), it overestimated FM ~10% compared to the 4-C model and underestimated FM by ~4% compared to the deuterium method in children ≥ 6 years. QMR was less concordant with 4-C or D(2)O models for infants ≤ 8 kg. Thus, a piece-wise defined model for mathematically fitting the QMR data to the D(2)O data was employed and this adjustment improved the accuracy relative to D(2)O and 4-C for infants. Our results suggest that the pediatric QMR with appropriate mathematical adjustment provides a fast and precise method for assessing FM longitudinally in infants and in children weighing up to 50 kg.  相似文献   

18.
The body composition of living gray seals (Halichoerus grypus) can be accurately predicted from a two-step model that involves measurement of total body water (TBW) by 2H or 3H dilution and application of predictive relationships between body components and TBW that were derived empirically by slaughter chemical analysis. TBW was overestimated by both 2HHO and 3HHO dilution; mean overestimates were 2.8 +/- 0.9% (SE) with 2H and 4.0 +/- 0.6% with 3H. The relationships for prediction of total body fat (TBF), protein (TBP), gross energy (TBGE), and ash (TBA) were as follows: %TBF = 105.1 - 1.47 (%TBW); %TBP = 0.42 (%TBW) - 4.75; TBGE (MJ) = 40.8 (mass in kg) - 48.5 (TBW in kg) - 0.4; and TBA (kg) = 0.1 - 0.008 (mass in kg) + 0.05 (TBW in kg). These relationships are applicable to gray seals of both sexes over a wide range of age and body conditions, and they predict the body composition of gray seals more accurately than the predictive equations derived from ringed seals (Pusa hispida) (Stirling et al., Can. J. Zool. 53: 1021-1027, 1975) and from the equation of Pace and Rathbun (J. Biol. Chem. 158: 685-691, 1945), which has been reported to be generally applicable to mammals.  相似文献   

19.
The purpose of this study was to determine whether greater body fat mass (FM) relative to lean mass would result in more severe muscle damage and greater decrements in leg strength after downhill running. The relationship between the FM-to-fat-free mass ratio (FM/FFM) and the strength decline resulting from downhill running (-11% grade) was investigated in 24 male runners [age 23.4 +/- 0.7 (SE) yr]. The runners were divided into two groups on the basis of FM/FFM: low fat (FM/FFM = 0.100 +/- 0.008, body mass = 68.4 +/- 1.3 kg) and normal fat (FM/FFM = 0.233 +/- 0.020, body mass = 76.5 +/- 3.3 kg, P < 0.05). Leg strength was reduced less in the low-fat (-0.7 +/- 1.3%) than in the normal-fat individuals (-10.3 +/- 1.5%) 48 h after, compared with before, downhill running (P < 0.01). Multiple linear regression analysis revealed that the decline in strength could be predicted best by FM/FFM (r2 = 0.44, P < 0.05) and FM-to-thigh lean tissue cross-sectional area ratio (r2 = 0.53, P < 0.05), with no additional variables enhancing the prediction equation. There were no differences in muscle glycogen, creatine phosphate, ATP, or total creatine 48 h after, compared with before, downhill running; however, the change in muscle glycogen after downhill running was associated with a higher FM/FFM (r = -0.56, P < 0.05). These data suggest that FM/FFM is a major determinant of losses in muscle strength after downhill running.  相似文献   

20.
Metabolic rate, more specifically resting metabolic rate (RMR) or sleeping metabolic rate (SMR), of an adult subject is usually expressed as a function of the fat-free mass (FFM). Chronic exercise is thought to increase FFM and thus to increase RMR and SMR. We determined body mass (BM), body composition, and SMR before, during, and after an endurance training programme without interfering with energy intake. The subjects were 11 women and 12 men, aged 37 (SD 3) years and body mass index 22.3 (SD 1.5) kg · m–2. The endurance training prepared subjects to run a half marathon competition after 44 weeks. The SMR was measured overnight in a respiration chamber. Body composition was measured by hydrostatic weighing. Measurements were performed at 0, 8, 20, 40, and 90 weeks after the start of the training. The BM had decreased from a mean value of 66.6 (SD 6.9) to 65.6 (SD 6.7) kg (P<0.01), fat mass (FM) had decreased from 17.1 (SD 3.9) to 13.5 (SD 3.6) kg (P<0.001), and FFM had increased from 49.5 (SD 7.3) to 52.2 (SD 7.6) kg (P<0.001) at 40 weeks. Mean SMR before and after 40 weeks training was 6.5 (SD 0.7) and 6.2 (SD 0.6) MJ · day–1 (P<0.05). The decrease in SMR was related to the decrease in BM (r=0.62,P=0.001). At 90 weeks, when most subjects had not trained for nearly a year, BM and SMR were not significantly different from the initial value while FM and FFM had not changed since week 40 of training. In conclusion, it was found that an exercise induced increase in FFM did not result in an increase in SMR. There was an indication of the opposite effect, a decrease in SMR in the long term during training, possibly as a defence mechanism of the body in the maintenance of BM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号