首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An increase in the intracellular cAMP concentration induces tyrosine phosphorylation of the epidermal growth factor receptor (EGFR) followed by activation of extracellular signal-regulated kinases 1/2 (ERK1/2). In this report we demonstrate that these effects of cAMP are mediated via activation of protein kinase A (PKA). Chemical inhibition of PKA suppressed forskolin-induced EGFR tyrosine phosphorylation and ERK1/2 activation in PC12 cells. Furthermore, forskolin failed to induce significant tyrosine phosphorylation of the EGFR and ERK1/2 activation in PKA-defective PC12 cells. Forskolin-induced EGFR tyrosine phosphorylation was also observed in A431 cells and in membranes isolated from these cells. Phosphoamino acid analysis indicated that the recombinant catalytic subunit of PKA elicited phosphorylation of the EGFR on both tyrosine and serine but not threonine residues in A431 membranes. Together, our data indicate that activation of PKA mediates the effects of cAMP on the EGFR and ERK1/2. While PKA may directly phosphorylate the EGFR on serine residues, PKA-induced tyrosine phosphorylation of the EGFR occurs by an indirect mechanism.  相似文献   

2.
Colorectal cancer is a leading cause of cancer-related morbidity and mortality in the United States. Curcumin, the yellow pigment in turmeric, possesses inhibitory effects on growth of a variety of tumor cells by reducing cell proliferation and inducing apoptosis. Effects of the peroxisome proliferator-activated receptor-gamma (PPARgamma) on stimulating cell differentiation and on inducing cell cycle arrest have attracted attention from the perspective of treatment and prevention of cancer. The aim of this study was to elucidate the mechanisms by which curcumin inhibits colon cancer cell growth. In the present report, we observed that curcumin, in a dose-dependent manner, inhibited the growth of Moser cells, a human colon cancer-derived cell line, and stimulated the trans-activating activity of PPARgamma. Further studies demonstrated that activation of PPARgamma was required for curcumin to inhibit Moser cell growth. Activation of PPARgamma mediated curcumin suppression of the expression of cyclin D1, a critical protein in the cell cycle, in Moser cells. In addition, curcumin blocked EGF signaling by inhibiting EGF receptor (EGFR) tyrosine phosphorylation and suppressing the gene expression of EGFR mediated by activation of PPARgamma. In addition to curcumin reduction of the level of phosphorylated PPARgamma, inhibition of cyclin D1 expression played a major and significant role in curcumin stimulation of PPARgamma activity in Moser cells. Taken together, our results demonstrated for the first time that curcumin activation of PPARgamma inhibited Moser cell growth and mediated the suppression of the gene expression of cyclin D1 and EGFR. These results provided a novel insight into the roles and mechanisms of curcumin in inhibition of colon cancer cell growth and potential therapeutic strategies for treatment of colon cancer.  相似文献   

3.
Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.  相似文献   

4.
Ca(2+)-dependent agonists, such as carbachol (CCh), stimulate epidermal growth factor receptor (EGFR) transactivation and mitogen-activated protein kinase activation in T(84) intestinal epithelial cells. This pathway constitutes an antisecretory mechanism by which CCh-stimulated chloride secretion is limited. Here, we investigated mechanisms underlying CCh-stimulated epidermal growth factor receptor (EGFR) transactivation. Thapsigargin (TG, 2 microM) stimulated EGFR and extracellular signal-regulated kinase (ERK) phosphorylation in T(84) cells. Inhibition of either EGFR or ERK activation, with tyrphostin AG1478 (1 microM) and PD 98059 (20 microM), respectively, potentiated chloride secretory responses to TG, as measured by changes in short-circuit current (I(sc)) across T(84) cells. CCh (100 microM) stimulated tyrosine phosphorylation and association of the Ca(2+)-dependent tyrosine kinase, PYK-2, with the EGFR, which was inhibited by the Ca(2+) chelator, BAPTA (20 microM). The calmodulin inhibitor, fluphenazine (50 microM) inhibited CCh-stimulated PYK-2 association with the EGFR and phosphorylation of EGFR and ERK. CCh also induced tyrosine phosphorylation of p60(src) and association of p60(src) with both PYK-2 and the EGFR. The Src family kinase inhibitor, PP2 (20 nM-20 microM) attenuated CCh-stimulated EGFR and ERK phosphorylation and potentiated chloride secretory responses to CCh. We conclude that CCh-stimulated transactivation of the EGFR is mediated by a pathway involving elevations in intracellular Ca(2+), calmodulin, PYK-2, and p60(src). This pathway represents a mechanism that limits CCh-stimulated chloride secretion across intestinal epithelia.  相似文献   

5.
In contrast to the well known cytotoxic effects of tumor necrosis factor (TNF) alpha in many mammary cancer cells, we have found that TNF stimulates the proliferation and motility of human mammary epithelial cells (HMECs). Since the response of HMECs to TNF is similar to effects mediated by epidermal growth factor receptor (EGFR) activation, we explored the potential role of cross-talk through the EGFR signaling pathways in mediating cellular responses to TNF. Using a microarray enzyme-linked immunoassay, we found that exposure to TNF stimulated the dose-dependent shedding of the EGFR ligand transforming growth factor alpha (TGFalpha). Both proliferation and motility of HMECs induced by TNF was prevented either by inhibiting membrane protein shedding with a metalloprotease inhibitor, by blocking epidermal growth factor receptor (EGFR) kinase activity, or by limiting ligand-receptor interactions with an antagonistic anti-EGFR antibody. EGFR activity was also necessary for TNF-induced release of matrix metalloprotease-9, thought to be an essential regulator of mammary cell migration. The cellular response to TNF was associated with a biphasic temporal pattern of extracellular signal-regulated kinase (ERK) phosphorylation, which was EGFR-dependent and modulated by inhibition of metalloprotease-mediated shedding. Significantly, the late phase of ERK phosphorylation, detectable within 4 h after exposure, was blocked by the metalloprotease inhibitor batimastat, indicating that autocrine signaling through ligand shedding was responsible for this secondary wave of ERK activity. Our results indicate a novel and important role for metalloprotease activation and EGFR transmodulation in mediating the cellular response to TNF.  相似文献   

6.
The aryl hydrocarbon receptor (AhR) mediates many toxic effects of environmental pollutants. AhR also interacts with multiple growth factor-driven signaling pathways. In the course of examining effects of growth factors on proliferation of human colon cancer cells, we identified cross talk between AhR and the epidermal growth factor receptor (EGFR). In the present work, we explored underlying signal transduction mechanisms and functional consequences of this interaction. With the use of two human colon cancer cell lines, H508 and SNU-C4, we examined the effects of AhR ligands including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on cell proliferation and activation of EGFR, ERK1/2, and Src kinases. In colon cancer cells, 5-day incubation with TCDD stimulated a twofold dose-dependent increase in cell proliferation that was detectable with 1 nM and maximal with 30 nM TCDD. TCDD induced dose- and time-dependent phosphorylation of EGFR (Tyr845) and ERK1/2; maximal phosphorylation was observed 5 to 10 min after addition of 30 nM TCDD. Both TCDD-induced ERK1/2 phosphorylation and cell proliferation were abolished by AhR small interfering RNA, AhR-specific inhibitor CH223191, Src kinase inhibitor PP2, neutralizing antibodies against matrix metalloproteinase 7, heparin-binding-EGF-like growth factor and EGFR, EGFR inhibitors (AG1478 and PD168393), and MEK1 inhibitor PD98059. Coimmunoprecipitation experiments revealed that AhR forms a protein complex with Src and regulates Src activity by phosphorylating Src (Tyr416) and dephosphorylating Src (Tyr527). These data support novel observations that, in human colon cancer cells, Src-mediated cross talk between aryl hydrocarbon and EGFR results in ERK1/2 activation, thereby stimulating cell proliferation.  相似文献   

7.
In this study, we present multiple lines of evidence to support a critical role for heparin-bound EGF (epidermal growth factor)-like growth factor (HB-EGF) and tumor necrosis factor-alpha-converting enzyme (TACE) (ADAM17) in the transactivation of EGF receptor (EGFR), ERK phosphorylation, and cellular proliferation induced by the 5-HT(2A) receptor in renal mesangial cells. 5-hydroxy-tryptamine (5-HT) resulted in rapid activation of TACE, HB-EGF shedding, EGFR activation, ERK phosphorylation, and longer term increases in DNA content in mesangial cells. ERK phosphorylation was attenuated by 1) neutralizing EGFR antibodies and the EGFR kinase inhibitor, AG1478, 2) neutralizing HB-EGF, but not amphiregulin, antibodies, heparin, or CM197, and 3) pharmacological inhibitors of matrix-degrading metalloproteinases or TACE small interfering RNA. Exogenously administered HB-EGF stimulated ERK phosphorylation. Additionally, TACE was co-immunoprecipitated with HB-EGF. Small interfering RNA against TACE also blocked 5-HT-induced increases in ERK phosphorylation, HB-EGF shedding, and DNA content. In aggregate, this work supports a pathway map that can be depicted as follows: 5-HT --> 5-HT(2A) receptor --> TACE --> HB-EGF shedding --> EGFR --> ERK --> increased DNA content. To our knowledge, this is the first time that TACE has been implicated in 5-HT-induced EGFR transactivation or in proliferation induced by a G protein-coupled receptor in native cells in culture.  相似文献   

8.
Growth hormone (GH) promotes signaling by causing activation of the non-receptor tyrosine kinase, JAK2, which associates with the GH receptor. GH causes phosphorylation of epidermal growth factor receptor (EGFR; ErbB-1) and its family member, ErbB-2. For EGFR, JAK2-mediated GH-induced tyrosine phosphorylation may allow EGFR to serve as a scaffold for GH signaling. For ErbB-2, GH induces serine/threonine phosphorylation that dampens basal and EGF-induced ErbB-2 kinase activation. We now further explore GH-induced EGFR phosphorylation in 3T3-F442A, a preadipocytic fibroblast cell line that expresses endogenous GH receptor, EGFR, and ErbB-2. Using a monoclonal antibody that recognizes ERK consensus site phosphorylation (PTP101), we found that GH caused PTP101-reactive phosphorylation of EGFR. This GH-induced EGFR phosphorylation was prevented by MEK1 inhibitors but not by a protein kinase C inhibitor. Although GH did not discernibly affect EGF-induced EGFR tyrosine phosphorylation, we observed by immunoblotting a substantial decrease of EGF-induced EGFR degradation in the presence of GH. Fluorescence microscopy studies indicated that EGF-induced intracellular redistribution of an EGFR-cyan fluorescent protein chimera was markedly reduced by GH cotreatment, in support of the immunoblotting results. Notably, protection from EGF-induced degradation and inhibition of EGF-induced intracellular redistribution afforded by GH were both prevented by a MEK1 inhibitor, suggesting a role for GH-induced ERK activation in regulating the trafficking itinerary of the EGF-stimulated EGFR. Finally, we observed augmentation of early aspects of EGF signaling (EGF-induced ERK2 activation and EGF-induced Cbl tyrosine phosphorylation) by GH cotreatment; the GH effect on EGF-induced Cbl tyrosine phosphorylation was also prevented by MEK1 inhibition. These data indicate that GH, by activating ERKs, can modulate EGF-induced EGFR trafficking and signaling and expand our understanding of mechanisms of cross-talk between the GH and EGF signaling systems.  相似文献   

9.
Epidermal growth factor receptor (EGFR) is activated by autocrine growth factors in many types of tumours, including breast tumours. This receptor has been linked to a poor prognosis in breast cancer and may promote proliferation, migration, invasion, and cell survival as well as inhibition of apoptosis. Human breast ductal carcinoma MCF7 cells were transfected using FuGENE 6 with 1 microg of pcDNA3-EGFR containing the full-length human EGFR promoter or 1 microg of the vectors alone (pcDNA3). The transfected cells were transferred into a 25-cm2 flask containing growth medium and G418. Confluent cultures were lysed, total protein levels measured and electrophoresed. The electrophoresed samples were transferred to nitrocellulose and incubated overnight at 4 degrees C with either anti-EGFR or anti-phospho-ERK and immunoreactive bands were visualized using HRP-linked secondary antibody. We created a model system of EGFR overexpression in MCF7 clones with stably transfected pcDNA3/EGFR plasmid. These cells have been shown to promote substantial phosphorylation of both ERK1 and ERK2. The high level of EGFR and ERK1/2 phosphorylation was not seen in the pcDNA3 vector control cells or in non-transfected cells. In this article we describe successful transient transfection experiments on MCF7 cells using the FuGENE 6 Transfection Reagent. The overexpression of EGFR could be a mediated stress response and a survival signal that involves ERK1 and ERK2 phosphorylation.  相似文献   

10.
The calcium sensing receptor (CaR) is a G-protein-coupled receptor that is activated by extracellular calcium ([Ca2+]o). In MCF-7 human breast cancer cells, we previously reported that treatment with [Ca2+]o for 24 h leads to an over-expression of the Transient Receptor Potential Canonical 1 (TRPC1) cation channel and cell proliferation. Both involve the extracellular signal-regulated Kinases 1 & 2 (ERK1/2). MCF-7 also expressed epidermal growth factor receptor (EGFR) which is involved in cell proliferation through ERK1/2. Therefore, we investigated the cross-talk between CaR and EGFR in mediating ERK1/2 phosphorylation, TRPC1 over-expression and cell proliferation. Our data show that both high [Ca2+]o and EGF phosphorylate ERK1/2. Furthermore, inhibition of EGFR kinase and matrix metalloproteinases (MMPs) reduced the overall effects mediated by [Ca2+]o such as activation of ERK1/2, expression of TRPC1 and cell proliferation. They indicate the important role of the CaR-EGFR-ERK axis in transmitting mitogenic signals generated by high [Ca2+]o in MCF-7 cells.  相似文献   

11.
Gliclazide, a second-generation sulfonylurea, has anti-oxidant properties as well as hypoglycemic activities. In the present study, we investigated whether gliclazide affected proliferation and/or differentiation of HW white and HB2 brown adipocyte cell lines. Gliclazide inhibited proliferation of HW and HB2 cells in the medium containing fetal calf serum or epidermal growth factor (EGF). Gliclazide inhibited phosphorylation of EGF receptor and of extracellular signal-regulated kinase (ERK) 1/2 stimulated by EGF. Gliclazide increased lipid accumulation and peroxisome proliferator-activated receptor gamma (PPARgamma) expression in the early stage of differentiation of adipocytes. A K(ATP) channel activator, diazoxide, did not inhibit the increase of lipid accumulation by gliclazide. Furthermore, gliclazide inhibited the DNA-binding activity of PPARgamma in mature adipocytes. On the other hand, glibenclamide, other sulfonylurea, did not show these effects. These results indicate gliclazide inhibits proliferation and stimulates differentiation of adipocytes via down-regulation of the EGFR signalling. Gliclazide may have preventive and therapeutic effects on obesity, as well as on type 2 diabetes.  相似文献   

12.
13.
Whey acidic protein (WAP) is a major whey protein in milk that has structural similarity to the family of serine protease inhibitors with WAP motif domains characterized by a four-disulfide core. We previously reported that enforced expression of the mouse WAP transgene in mammary epithelial cells inhibits their proliferation in vitro and in vivo by means of suppressing cyclin D1 expression (Nukumi et al., 2004, Dev Biol 274: 31-44). This study was conducted in order to clarify the molecular mechanism of the inhibitory function of WAP in HC11 cells, a mammary epithelial cell line. The assembly of laminin, a component in the extracellular matrix, was much more prominent around WAP-clonal HC11 cells that stably expressed the WAP transgene than around mock-clonal HC11 cells, and the proliferation of WAP-clonal HC11 cells was particularly inhibited in the presence of laminin. A laminin degradation assay demonstrated that WAP inhibited the activity of the pancreatic elastase-mediated cleavage of laminin B1 and the phosphorylation of ERK1/2. ERK1/2 phosphorylation was blocked by an inhibitor of the epidermal growth factor (EGF) receptor AG1478. Treatment with pancreatic elastase was found to enhance the proliferation of mock-clonal HC11 cells, but had no effect on that of WAP-clonal HC11 cells. The proliferation of WAP-clonal HC11 cells was recovered by the addition of exogenous EGF. We concluded that WAP plays some role in regulating the proliferation of mammary epithelial cells by preventing elastase-type serine protease from carrying out laminin degradation and thereby suppressing the MAP kinase signal pathway.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) plays an important role in proliferation of vascular smooth muscle cells (VSMCs). However, the mechanism that IGF-I induces VSMCs proliferation is not completely understood. In this study, we determined (a) whether and how IGF-I induces transactivation of epidermal growth factor receptor (EGFR) in primary rat aortic VSMCs, (b) the contribution of EGFR to IGF-I-stimulated activation of extracellular signal-regulated kinase (ERK) and cell proliferation, and (c) the role of reactive oxygen species (ROS) in the cellular function. We showed that IGF-I induced phosphorylation of EGFR and ERK1/2 in VSMCs. AG1478, an EGFR inhibitor, inhibited IGF-I-induced phoshorylation of EGFR and ERK1/2. IGF-I stimulated ROS production and Src activation. Antioxidants inhibited IGF-I-induced ROS generation and activation of EGFR, ERK, and Src. Src kinase inhibitor PP1 and Src siRNA blocked IGF-I-induced activation of EGFR and ERK1/2. Inhibition of IGF-I-stimulated EGFR activation inhibited IGF-I-induced VSMC proliferation. These results suggest that (1) IGF-I induces EGFR activation through production of ROS and ROS-mediated Src activation in VSMCs, and (2) EGFR transactivation is required for IGF-I-induced VSMC proliferation.  相似文献   

15.
Thrombin is involved in abnormal proliferation of vascular smooth muscle cells (VSMCs) associated with pathogenic vascular remodeling. Thrombin stimulation results in extracellular signal-regulated kinase (ERK)1/2 activation through transactivation of the epidermal growth factor receptor (EGFR). Here, using specific antibodies and inhibitors, we investigated the thrombin-induced phosphorylation of Src family kinases, nonreceptor proline-rich tyrosine kinase (Pyk2), EGFR, and ERK1/2. Our results show that Src and Pyk2 are involved upstream of the EGFR transactivation that is required for ERK1/2 phosphorylation. The investigation of the role of intracellular calcium concentration ([Ca2+]i) and calcium mobilization with the Ca2+ chelator BAPTA and thapsigargin, respectively, indicated that thrombin- and thapsigargin-induced phosphorylation of the EGFR but not ERK1/2 is dependent on an increase in [Ca2+]i. Moreover, only after BAPTA-AM pretreatment was thrombin-induced activation of ERK1/2 partially preserved from the effects of EGFR and PKC inhibition but not Src family kinase inhibition. These results suggest that BAPTA, by preventing [Ca2+]i elevation, unmasks a new pathway of Src family kinase-dependent thrombin-stimulated ERK1/2 phosphorylation that is independent of EGFR and PKC activation.  相似文献   

16.
The mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) cascade plays a central role in intracellular signaling by many extracellular stimuli. One target of the ERK cascade is peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor that promotes differentiation and apoptosis. It was previously demonstrated that PPARgamma activity is attenuated upon mitogenic stimulation due to phosphorylation of its Ser84 by ERKs. Here we show that stimulation by tetradecanoyl phorbol acetate (TPA) attenuates PPARgamma's activity in a MEK-dependent manner, even when Ser84 is mutated to Ala. To elucidate the mechanism of attenuation, we found that PPARgamma directly interacts with MEKs, which are the activators of ERKs, but not with ERKs themselves, both in vivo and in vitro. This interaction is facilitated by MEKs' phosphorylation and is mediated by the basic D domain of MEK1 and the AF2 domain of PPARgamma. Immunofluorescence microscopy and subcellular fractionation revealed that MEK1 exports PPARgamma from the nucleus, and this finding was supported by small interfering RNA knockdown of MEK1 and use of a cell-permeable interaction-blocking peptide, which prevented TPA-induced export of PPARgamma from the nucleus. Thus, we show here a novel mode of downregulation of PPARgamma by its MEK-dependent redistribution from the nucleus to the cytosol. This unanticipated role for the stimulation-induced nuclear shuttling of MEKs shows that MEKs can regulate additional signaling components besides the ERK cascade.  相似文献   

17.
18.
Biological functions of tissue kallikrein (TK, KLK1) are mainly mediated by kinin generation and subsequent kinin B2 receptor activation. In this study, we investigated the potential role of TK and its signaling pathways in cultured human keratinocyte migration and in a rat skin wound healing model. Herein, we show that TK promoted cell migration and proliferation in a concentration- and time-dependent manner. Inactive TK or kinin had no significant effect on cell migration. Interestingly, cell migration induced by active TK was not blocked by icatibant or L-NAME, indicating an event independent of kinin B2 receptor and nitric oxide formation. TK's stimulatory effect on cell migration was inhibited by small interfering RNA for proteinase-activated receptor 1 (PAR1), and by PAR1 inhibitor. TK-induced migration was associated with increased phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase (ERK), which was blocked by inhibition of protein kinase C (PKC), Src, EGFR and ERK. TK-induced cell migration and EGFR phosphorylation were blocked by metalloproteinase (MMP) inhibitor, heparin, and antibodies against EGFR external domain, heparin-binding EGF-like growth factor (HB-EGF) and amphiregulin (AR). Local application of TK promoted skin wound healing in rats, whereas icatibant and EGFR inhibitor blocked TK's effect. Skin wound healing was further delayed by aprotinin and neutralizing TK antibody. This study demonstrates a novel role of TK in skin wound healing and uncovers new signaling pathways mediated by TK in promoting keratinocyte migration through activation of the PAR1-PKC-Src-MMP pathway and HB-EGF/AR shedding-dependent EGFR transactivation.  相似文献   

19.
The receptor for insulin-like growth factor 1 (IGF-1) mediates multiple cellular responses, including stimulation of both proliferative and anti-apoptotic pathways. We have examined the role of cross talk between the IGF-1 receptor (IGF-1R) and the epidermal growth factor receptor (EGFR) in mediating responses to IGF-1. In COS-7 cells, IGF-1 stimulation causes tyrosine phosphorylation of the IGF-1R beta subunit, the EGFR, insulin receptor substrate-1 (IRS-1), and the Shc adapter protein. Shc immunoprecipitates performed after IGF-1 stimulation contain coprecipitated EGFR, suggesting that IGF-1R activation induces the assembly of EGFR.Shc complexes. Tyrphostin AG1478, an inhibitor of the EGFR kinase, markedly attenuates IGF-1-stimulated phosphorylation of EGFR, Shc, and ERK1/2 but has no effect on phosphorylation of IGF-1R, IRS-1, and protein kinase B (Akt). Cross talk between IGF-1 and EGF receptors is mediated through an autocrine mechanism involving matrix metalloprotease-dependent release of heparin-binding EGF (HB-EGF), because IGF-1-mediated ERK activation is inhibited both by [Glu(52)]Diphtheria toxin, a specific inhibitor of HB-EGF, and the metalloprotease inhibitor 1,10-phenanthroline. These data demonstrate that IGF-1 stimulation of the IRS-1/PI3K/Akt pathway and the EGFR/Shc/ERK1/2 pathway occurs by distinct mechanisms and suggest that IGF-1-mediated "transactivation" of EGFR accounts for the majority of IGF-1-stimulated Shc phosphorylation and subsequent activation of the ERK cascade.  相似文献   

20.
Epidermal growth factor (EGF) family ligands have been implicated in cardiovascular diseases because of their enhanced expression in vascular lesions and their promoting effects on growth and migration of vascular smooth muscle cells (VSMCs). Betacellulin (BTC), a novel EGF family ligand, has been shown to be expressed in atherosclerotic lesions and to be a potent growth factor of VSMCs. However, the molecular mechanisms downstream of BTC involved in mediating vascular remodeling remain largely unknown. Therefore, the aim of this study was to examine the effects of BTC on signal transduction, growth, and migration in VSMCs. We found that BTC stimulated phosphorylation of EGF receptor (EGFR) at Tyr1068, which was completely blocked by an EGFR kinase inhibitor, AG-1478. BTC also phosphorylated ErbB2 at Tyr877, Tyr1112, and Tyr1248 and induced association of ErbB2 with EGFR, suggesting their heterodimerization in VSMCs. In postreceptor signal transduction, BTC stimulated phosphorylation of extracellular signal-regulated kinase (ERK)1/2, Akt, and p38 mitogen-activated protein kinase (MAPK). Moreover, BTC stimulated proliferation and migration of VSMCs. ERK and Akt inhibitors suppressed migration markedly and proliferation partially, whereas the p38 inhibitor suppressed migration partially but not proliferation. In addition, we found the presence of endogenous BTC in conditioned medium of VSMCs and an increase of BTC on angiotensin II stimulation. In summary, BTC promotes growth and migration of VSMCs through activation of EGFR, ErbB2, and downstream serine/threonine kinases. Together with the expression and processing of endogenous BTC in VSMCs, our results suggest a critical involvement of BTC in vascular remodeling. epidermal growth factor receptors; ErbB2; migration; signal transduction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号