首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An in vitro system using nuclei from parvovirus H-1-infected cells was used to characterize the influence of inhibitors of mammalian DNA polymerases on viral DNA synthesis. The experiments tested the effects of aphidicolin, which is highly specific for DNA polymerase alpha, and 2',3'-dideoxythymidine-5'-triphosphate (ddTTP), which inhibits cellular DNA polymerases in the order gamma greater than beta greater than alpha. Both aphidicolin and ddTTP were inhibitory, indicating that both polymerase alpha and a ddttp-sensitive enzyme are required for viral DNA synthesis. This was seen more clearly in kinetic measurements, which indicated an initial period of rapid DNA synthesis with the participation of polymerase alpha, followed by a period of less rapid, but more sustained, rate of DNA synthesis carried out by a ddTTP-sensitive enzyme, probably polymerase gamma. One interpretation of the results is that polymerase alpha functions in a strand displacement stage of the viral DNA replication mechanism, whereas polymerase gamma serves to convert the displaced single strands back to double-strand replicative form.  相似文献   

2.
A partially purified preparation of DNA polymerase alpha, obtained from the cytosol of Ehrlich ascites tumour cells, has been found to catalyze the conversion of MVM parvovirus, SS DNA (5 kilobases) to RF in vitro. The reaction initiates at a natural 55 base pair hairpin which exists at the 3' terminus of MVM SS DNA. The SS leads to RF conversion is sensitive to aphidicolin, resistant to ddTTP and is promoted by purine ribonucleoside 5' triphosphates, a phenomenon which could not be explained simply by stabilization effects on the in vitro deoxynucleotide precursor pool. In the absence of rNTPs, nascent complementary strands frequently terminate prematurely at a preferred location, between 1300 and 1700 nucleotides from the initiating 3' hairpin terminus. This in vitro system, involving self-primed parvovirus DNA synthesis, provides a convenient assay for those components of the mammalian replicative DNA polymerase complex which are required for the elongation of nascent DNA chains.  相似文献   

3.
The effects of the inhibitors 2'3' dideoxythymidine triphosphate (ddTTP) and 1-beta-D-arabinofuranosyl cytosine triphosphate (araCTP) on DNA synthesis in isolated S-phase HeLa S3 nuclei have been examined. These effects are compared with the effects of the same inhibitors in partially purified preparations of DNA polymerases alpha and beta. The effect of ddTTP on partially purified DNA polymerase gamma was also tested. DNA polymerases beta and gamma were very sensitive to ddTTP whereas DNA polymerase alpha and DNA synthesis in isolated nuclei were quite resistant. The synthesis and subsequent ligation of primary DNA pieces ('Okazaki fragments') were not affected by the presence of this inhibitor. DNA synthesis in isolated nuclei and DNA polymerase alpha activity were very sensitive to araCTP whereas DNA polymerase beta was almost totally resistant to the inhibitor. The results indicate a major role for DNA polymerase alpha in DNA replication.  相似文献   

4.
The involvement of DNA polymerases alpha, beta, and delta in DNA repair synthesis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) was investigated in human fibroblasts (HF). The effects of anti-(DNA polymerase alpha) monoclonal antibody, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), dideoxythymidine triphosphate (ddTTP), and aphidicolin on MNNG-induced DNA repair synthesis were investigated to dissect the roles of the different DNA polymerases. A subcellular system (permeable cells), in which DNA repair synthesis and DNA replication were differentiated by CsCl gradient centrifugation of BrdUMP density-labeled DNA, was used to examine the effects of the polymerase inhibitors. Another approach investigated the effects of several of these inhibitors on MNNG-induced DNA repair synthesis in intact cells by measuring the amount of [3H]thymidine incorporated into repaired DNA as determined by autoradiography and quantitation with an automated video image analysis system. In permeable cells, MNNG-induced DNA repair synthesis was inhibited 56% by 50 micrograms of aphidicolin/mL, 6% by 10 microM BuPdGTP, 13% by anti-(DNA polymerase alpha) monoclonal antibodies, and 29% by ddTTP. In intact cells, MNNG-induced DNA repair synthesis was inhibited 57% by 50 micrograms of aphidicolin/mL and was not significantly inhibited by microinjecting anti-(DNA polymerase alpha) antibodies into HF nuclei. These results indicate that both DNA polymerases delta and beta are involved in repairing DNA damage caused by MNNG.  相似文献   

5.
S L Dresler  K S Kimbro 《Biochemistry》1987,26(10):2664-2668
It is well established that DNA replication and ultraviolet-induced DNA repair synthesis in mammalian cells are aphidicolin-sensitive and thus are mediated by one or both of the aphidicolin-sensitive DNA polymerases, alpha and/or delta. Recently, it has been shown that DNA polymerase delta is much more sensitive to inhibition by the nucleotide analogue 2',3'-dideoxythymidine 5'-triphosphate (ddTTP) than DNA polymerase alpha but is less sensitive than DNA polymerase beta [Wahl, A. F., Crute, J. J., Sabatino, R. D., Bodner, J. B., Marraccino, R. L., Harwell, L. W., Lord, E. M., & Bambara, R. A. (1986) Biochemistry 25, 7821-7827]. We find that DNA replication and ultraviolet-induced DNA repair synthesis in permeable human fibroblasts are also more sensitive to inhibition by ddTTP than polymerase alpha and less sensitive than polymerase beta. The Ki for ddTTP of replication is about 40 microM and that of repair synthesis is about 25 microM. These are both much less than the Ki of polymerase alpha (which is greater than 200 microM) but greater than the Ki of polymerase beta (which is less than 2 microM). These data suggest that DNA polymerase delta participates in DNA replication and ultraviolet-induced DNA repair synthesis in human cells.  相似文献   

6.
The involvement of DNA polymerases alpha, beta, and gamma in DNA repair synthesis was investigated in subcellular preparations of cultured hamster and human cells. A variety of DNA damaging agents, including bleomycin, neocarzinostatin, UV irradiation, and alkylating agents, were utilized to induce DNA repair. The sensitivity of repair synthesis, as well as replicative synthesis and purified DNA polymerase beta activity, to inhibition by the DNA polymerase inhibitors dideoxythymidine triphosphate, aphidicolin, cytosine arabinoside triphosphate, and N-ethylmaleimide was determined. No evidence was obtained for a major role of polymerase gamma in any type of repair synthesis. In both hamster and human cells, the sensitivity of bleomycin- and neocarzinostatin-induced repair synthesis to ddTTP inhibition was essentially identical with that observed for purified polymerase beta, indicating these repair processes proceeded through a mechanism utilizing polymerase beta. Repair synthesis induced by UV irradiation and alkylating agents was not sensitive to ddTTP, indicating repair of these lesions occurred through a pathway primarily utilizing a different DNA polymerase; presumably polymerase alpha. However, replicative synthesis was much more sensitive to polymerase alpha inhibitors than was repair synthesis induced by UV irradiation or alkylating agents. Neither the amount of DNA damage nor the amount of induced repair synthesis influenced the degree to which the different DNA polymerases were involved in repair synthesis. The possibility that "patch size" or the actual type of DNA damage determines the extent to which different polymerases participate in DNA repair synthesis is discussed.  相似文献   

7.
Summary The role of DNA polymerases in the replication of SV40 DNA was studied using a T-antigen-dependent assay supplemented with a human KB cell extract. Inhibition of DNA polymerase α by addition of aphidicolin or monoclonal antibodies prevented DNA synthesis, confirming the requirement for this enzyme in replication. The replication process was unaffected by ddTTP at a concentration (5 μM) inhibitory to DNA polymerases β and γ, however, higher concentrations of ddTTP (200 μM) caused an apparent accumulation of relaxed circular plasmid with a concomitant decrease in DNA synthesis. An analysis of this replication intermediate indicated that it was formed during the replication reaction and that the replicative cycle was nearly complete. A kinetic study of ddTTP inhibition strongly suggested DNA polymerase ε (PCNA-independent DNA polymerase δ) was the target of the inhibitor and that this enzyme functions during the final stages of DNA replication.  相似文献   

8.
9.
Simian virus 40 chromosomes carry out replicative DNA synthesis in vitro which is sensitive to aphidicolin and to N-ethylmaleimide, resistant to 2',3'-dideoxythymidine-5'-triphosphate, and proportional to the amount of chromosome-associated alpha-like polymerase. Thus, an alpha-like DNA polymerase (alpha polymerase or delta polymerase) is responsible for in vitro DNA synthesis.  相似文献   

10.
A multienzyme complex consisting of DNA polymerase and several DNA precursor-synthesizing enzymes was solubilized by gentle lysis of cultured human cells. This complex channelled the distal precursor [3H]dTMP into DNA. The patterns of inhibition of the complex by aphidicolin and dideoxythymidine triphosphate (ddTTP) suggested that the complex contained the replicative DNA polymerase, polymerase alpha. Inhibition by ddTTP was competitive with dTTP. This was exploited to estimate the effective concentration of [3H]dTTP at the site of DNA synthesis during channelling of [3H]dTMP into DNA. The estimated concentration (about 50 microM) was so high as to suggest that the solubilized complex was able to functionally compartmentalize DNA precursors.  相似文献   

11.
12.
Aphidicolin, a specific inhibitor of DNA polymerase alpha, provided a novel method for distinguishing between initiation of DNA synthesis at the simian virus 40 (SV40) origin of replication (ori) and continuation of replication beyond ori. In the presence of sufficient aphidicolin to inhibit total DNA synthesis by 50%, initiation of DNA replication in SV40 chromosomes or ori-containing plasmids continued in vitro, whereas DNA synthesis in the bulk of SV40 replicative intermediate DNA (RI) that had initiated replication in vivo was rapidly inhibited. This resulted in accumulation of early RI in which most nascent DNA was localized within a 600- to 700-base-pair region centered at ori. Accumulation of early RI was observed only under conditions that permitted initiation of SV40 ori-dependent, T-antigen-dependent DNA replication and only when aphidicolin was added to the in vitro system. Increasing aphidicolin concentrations revealed that DNA synthesis in the ori region was not completely resistant to aphidicolin but simply less sensitive than DNA synthesis at forks that were farther away. Since DNA synthesized in the presence of aphidicolin was concentrated in the 300 base pairs on the early gene side of ori, we conclude that the initial direction of DNA synthesis was the same as that of early mRNA synthesis, consistent with the model proposed by Hay and DePamphilis (Cell 28:767-779, 1982). The data were also consistent with initiation of the first DNA chains in ori by CV-1 cell DNA primase-DNA polymerase alpha. Synthesis of pppA/G(pN)6-8(pdN)21-23 chains on a single-stranded DNA template by a purified preparation of this enzyme was completely resistant to aphidicolin, and further incorporation of deoxynucleotide monophosphates was inhibited. Therefore, in the presence of aphidicolin, this enzyme could initiate RNA-primed DNA synthesis at ori first in the early gene direction and then in the late gene direction, but could not continue DNA synthesis for an extended distance.  相似文献   

13.
DNA repair synthesis can be specifically measured in osmotically opened, confluent cultured human fibroblasts after exposure to DNA damaging agents such that both induction and mediation of DNA repair synthesis can take place in this cell-free system. Alternatively, by utilizing osmotically shocked, log phase cells and altering the DNA precursors, pH and ionic strength, replicative DNA synthesis can be specifically monitored. Autoradiographic studies show that virtually all of the nuclei from the lysates of the confluent, UV-iradiated cells are lightly labeled in the fashion characteristic of DNA repair. By contrast, only a fraction of nuclei is labeled in a population of unperturbed, opened log phase cells and the labeling is heavy and characteristic of replicative synthesis. Furthermore, equilibrium density gradient sedimentation shows that DNA synthesis in lysates of log-phase cells is semiconservative, whereas that with UV-irradiated cells is repair synthesis. This open cell system has been used to study the enzymology of DNA repair. Thus, dideoxythymidine triphosphate, a specific inhibitor of DNA polymerases beta and gamma, does not inhibit either replicative or repair synthesis. By contrast, aphidicolin, a specific inhibitor of DNA polymerase alpha, inhibits DNA repair and replicative synthesis in both intact and permeabilized cells. Finally, phage T4 UV-exonuclease stimulates repair synthesis, but only when phage T4 UV-endonuclease is also added to the UV-irradiated nuclei.  相似文献   

14.
Purine ribonucleoside monophosphates were found to inhibit chain elongation catalyzed by herpes simplex virus (HSV) DNA polymerase when DNA template-primer concentrations were rate-limiting. Inhibition was fully competitive with DNA template-primer during chain elongation; however, DNA polymerase-associated exonuclease activity was inhibited noncompetitively with respect to DNA. Combinations of 5'-GMP and phosphonoformate were kinetically mutually exclusive in dual inhibitor studies. Pyrimidine nucleoside monophosphates and deoxynucleoside monophosphates were less inhibitory than purine riboside monophosphates. The monophosphates of 9-beta-D-arabinofuranosyladenine, Virazole (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide), 9-(2-hydroxyethoxymethyl)guanine, and 9-(1,3-dihydroxy-2-propoxymethyl)guanine exerted little or no inhibition. In contrast to HSV DNA polymerase, human DNA polymerase alpha was not inhibited by purine ribonucleoside monophosphates. These studies suggest the possibility of a physiological role of purine ribonucleoside monophosphates as regulators of herpesvirus DNA synthesis and a new approach to developing selective anti-herpesvirus compounds.  相似文献   

15.
An adenovirus (Ad) DNA replication complex extracted from infected HeLa nuclei could be purified free of the bulk of intracellular DNA polymerase activity by sedimetation in neutral sucrose gradients. However, the replication complex still retained some alpha and gamma DNA-polymerase activity. Since this complex is inhibited by 2', 3' dideoxythymidine-5'-triphosphate (ddTTP), an inhibitor of DNA polymerase gamma, a functional role for this enzyme in Ad DNA replication is suggested. Similar inhibition by ddTTP in intact Ad infected nuclei and comparable inhibition of Ad DNA synthesis in whole cells by dideoxythymidine (ddThy) are consistent with a role for DNA polymerase gamma. Uninfected HeLa nuclei or whole cells are not similarly inhibited by ddTTP or DDThy respectively. Such data does not rule out an additional functional role for other DNA polymerases, and recent experiments from this laboratory (1) suggest that DNA polymerase alpha is also involved in Ad DNA synthesis.  相似文献   

16.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

17.
Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase   总被引:80,自引:0,他引:80  
K R Tindall  T A Kunkel 《Biochemistry》1988,27(16):6008-6013
We have determined the fidelity of in vitro DNA synthesis catalyzed at high temperature by the DNA polymerase from the thermophilic bacterium Thermus aquaticus. Using a DNA substrate that contains a 3'-OH terminal mismatch, we demonstrate that the purified polymerase lacks detectable exonucleolytic proofreading activity. The fidelity of the Taq polymerase was measured by two assays which score errors produced during in vitro DNA synthesis of the lacZ alpha complementation gene in M13mp2 DNA. In both assays, the Taq polymerase produces single-base substitution errors at a rate of 1 for each 9000 nucleotides polymerized. Frameshift errors are also produced, at a frequency of 1/41,000. These results are discussed in relation to the effects of high temperature on fidelity and the use of the Taq DNA polymerase as a reagent for the in vitro amplification of DNA by the polymerase chain reaction.  相似文献   

18.
Overexpression in mammalian cells of the error-prone DNA polymerase beta (Pol beta) has been found to increase the spontaneous mutagenesis. Here, we investigated a possible mechanism used by Pol beta to be a genetic instability enhancer: its interference in replicative DNA synthesis, which is normally catalysed by the DNA polymerases alpha, delta and epsilon. By taking advantage of the ability to incorporate efficiently into DNA the chain terminator ddCTP as well as the oxidised nucleotide 8-oxo-dGTP, we show here that purified Pol beta can compete with the replicative DNA polymerases during replication in vitro of duplex DNA when added to human cell extracts. We found that involvement of Pol beta lowers replication fidelity and results in a modified error-specificity. Furthermore, we demonstrated that involvement of Pol beta occurred during synthesis of the lagging strand. These in vitro data provide one possible explanation of how overexpression of the enzyme could perturb the genetic instability in mammalian cells. We discuss these findings within the scope of the up-regulation of Pol beta in many cancer cells.  相似文献   

19.
DNA polymerases delta and alpha were purified from CV-1 cells, and their sensitivities to the inhibitors aphidicolin, (p-n-butylphenyl)deoxyguanosine triphosphate (BuPdGTP), and monoclonal antibodies directed against DNA polymerase alpha were determined. The effects of these inhibitors on DNA replication in permeabilized CV-1 cells were studied to investigate the potential roles of polymerases delta and alpha in DNA replication. Aphidicolin was shown to be a more potent inhibitor of DNA replication than of DNA polymerase alpha or delta activity. Inhibition of DNA replication by various concentrations of BuPdGTP was intermediate between inhibition of purified polymerase alpha or delta activity. Concentrations of BuPdGTP which totally abolished DNA polymerase alpha activity were much less effective in reducing DNA replication, as well as the activity of DNA polymerase delta. Monoclonal antibodies which specifically inhibited polymerase alpha activity reduced, but did not abolish, DNA replication in permeable cells. BuPdGTP, as well as anti-polymerase alpha antibodies, inhibited DNA replication in a nonlinear manner as a function of time. Depending upon the initial or final rates of inhibition of replication by BuPdGTP and anti-alpha antibodies, as little as 50%, or as much as 80%, of the replication activity can be attributed to polymerase alpha. The remaining replication activity (20-50%) is tentatively attributed to polymerase delta, because it was aphidicolin sensitive and resistant to both anti-polymerase alpha antibodies and low concentrations of BuPdGTP. A concentration of BuPdGTP which abolished polymerase alpha activity reduced, but did not abolish, both the synthesis and maturation of nascent DNA fragments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Reaction of DNA synthesis catalyzed by DNA polymerase I KF in the presence of 2'-deoxynucleoside 5'-alpha-thiotriphosphates (dNTP alpha S) was investigated. DNA with thiophosphate groups (DNA[P=S]) obtained by such a way was studied in reactions of hydrolysis and pyrophosphorolysis catalyzed by DNA polymerase I KF. It is shown that the rate of DNA elongation is decreased both on the step of incorporation of dNMP alpha S residues and on the step of incorporation of the next dNMP residue. The rate of pyrophosphorolysis of 3'-terminal dNMP alpha S was demonstrated to be one order of magnitude less in comparison with the corresponding reaction with the natural dNMP residue. Contrary, the rate of 3'----5'-exonuclease hydrolysis of both DNA[P=S] and DNA of the same structure revealed no distinguishable differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号