首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
O-linked-N-acetyl-glucosamine glycosylation (O-GlcNAcylation) of the serine and threonine residues of cellular proteins is a dynamic process and affects phosphorylation. Prolonged O-GlcNAcylation has been linked to diabetes-related complications, including mitochondrial dysfunction. Mitochondria are dynamically remodeling organelles, that constantly fuse (fusion) and divide (fission). An imbalance of this process affects mitochondrial function. In this study, we found that dynamin-related protein 1 (DRP1) is O-GlcNAcylated in cardiomyocytes at threonine 585 and 586. O-GlcNAcylation was significantly enhanced by the chemical inhibition of N-acetyl-glucosaminidase. Increased O-GlcNAcylation decreases the phosphorylation of DRP1 at serine 637, which is known to regulate DRP1 function. In fact, increased O-GlcNAcylation augments the level of the GTP-bound active form of DRP1 and induces translocation of DRP1 from the cytoplasm to mitochondria. Mitochondrial fragmentation and decreased mitochondrial membrane potential also accompany the increased O-GlcNAcylation. In conclusion, this report shows, for the first time, that O-GlcNAcylation modulates DRP1 functionality in cardiac muscle cells.  相似文献   

2.
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins is involved in many important cellular processes. Increased O-GlcNAc has been implicated in major diseases, such as diabetes and its complications and cardiovascular and neurodegenerative diseases. Recently, we reported that O-GlcNAc modification occurs in the proteasome and serves to inhibit proteasome function by blocking the ATPase activity in the 19S regulatory cap, explaining, at least in part, the adverse effects of O-GlcNAc modification and suggesting that downregulating O-GlcNAc might be important in the treatment of human diseases. In this study, we report on a novel mechanism to modulate cellular O-GlcNAc modification, namely through heat shock protein 90 (Hsp90) inhibition. We observed that O-linked β-N-acetylglucosamine transferase (OGT) interacts with the tetratricopeptide repeat binding site of Hsp90. Inhibition of Hsp90 by its specific inhibitors, radicicol or 17-N-allylamino-17-demethoxygeldanamycin, destabilized OGT in primary endothelial cell cultures and enhanced its degradation by the proteasome. Furthermore, Hsp90 inhibition downregulated O-GlcNAc protein modifications and attenuated the high glucose-induced increase in O-GlcNAc protein modification, including high glucose-induced increase in endothelial or type 3 isoform of nitric oxide synthase (eNOS) O-GlcNAcylation. These results suggest that Hsp90 is involved in the regulation of OGT and O-GlcNAc modification and that Hsp90 inhibitors might be used to modulate O-GlcNAc modification and reverse its adverse effects in human diseases.  相似文献   

3.
Summary The localization of PKC- was studied in rat sympathetic neurons using a polyclonal antibody specific for the 1- and 2-subspecies. The tissues studied included the superior cervical (SCG) and hypogastric (HGG) ganglia and the target tissues of the SCG and HGG neurons: the submandibular gland, iris, prostate and vas deferens. PKC--LI was found in nerve fibers in both ganglia. A proportion of the fibers in the SCG disappeared after decentralization, suggesting that the fibers were of both pre- and postganglionic origin. The somata of the HGG and SCG neurons expressed varying amounts of PKC--LI, the majority of SCG neurons being labelled only after colchicine treatment. In all target tissues there were PKC--immunoreactive nerve fibers in bundles, but the most peripheral branches of the fibers were negatively labelled. The results show that PKC--LI is widely present in sympathetic postganglionic neurons with mainly quantitative differences. The lack of PKC- in the most peripheral branches of nerve fibers might be a general feature of sympathetic postganglionic neurons, suggesting that the participation of PKC- in neurotransmitter release and in other functions in nerve terminals in sympathetic adrenergic neurons is unlikely.  相似文献   

4.
Chronic treatment of rats with the 2-adrenergic agonists clenbuterol and fenoterol over 16–19 d raised energy intake, expenditure, and body weight gain but did not affect fat or energy deposition, and body protein gain was increased by 50 and 18%, respectively. Both drugs increased the protein content and mitochondrial GDP-binding capacity of brown adipose tissue. Clenbuterol did not affect plasma insulin, growth hormone, or triiodothyronine levels, although insulin levels were reduced by fenoterol. Both drugs caused hypertrophy of skeletal muscle (gastrocnemius), and muscle protein synthesis in vivo (fractional rate) was elevated by 34 and 26% in clenbuterol and fenoteroltreated rats, respectively.  相似文献   

5.
6.
7.
The amyloid-β precursor protein (APP) was shown to be O-GlcNAcylated 15 years ago, but the effect of this modification on APP processing and formation of the Alzheimer’s disease associated amyloid-β (Aβ) peptide has so far not been investigated. Here, we demonstrate with pharmacological tools or siRNA that O-GlcNAcase and O-GlcNAc transferase regulate the level of O-GlcNAcylated APP. We also show that O-GlcNAcylation increases non-amyloidogenic α-secretase processing, resulting in increased levels of the neuroprotective sAPPα fragment and decreased Aβ secretion. Our results implicate O-GlcNAcylation as a potential therapeutic target for Alzheimer’s disease.  相似文献   

8.
9.
We have modified recombinant human Interleukin-1 using 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide atpH 6.5, resulting in the formation of an internally cross-linked protein. The major product (30% yield) of the reaction (17 kD; pI=6.2) was purified and fully characterized by peptide mapping using Endoproteinase Lys C. When digests were conducted under nondenaturing conditions, we found that the modified protein is different from the native protein. The native protein yielded 14 peptides after digestion, whereas only two large peptides and a tetrapeptide, Asn-Tyr-Pro-Lys, were released from the cross-linked protein (i.e., cleavage occurs only at residues Lys88 and Lys92). Using gel filtration, the two peptides were found to co-elute as a single species (15 kD), which represent a noncovalent complex of the amino terminal and C-terminal portions of the molecule. Further analysis of the modified protein by peptide mapping under denaturing conditions and by FAB MS analysis showed that Glu111 and Lys138 were internally cross-linked. The cross-linked protein had bioactivity (T-cell proliferation), fluorescence, and circular dichroism spectra similar to native IL-1. In contrast, while having similar secondary structure, the digested cross-linked protein had less than 1% of T-cell proliferative activity of the undigested protein. These data show that the structural integrity surrounding and perhaps including the Asn-Tyr-Pro-Lys region may be crucial for the biological activity of rIL-1 and may be important for the binding of IL-1 to its receptor.  相似文献   

10.
Summary The administration of a single subcutaneous dose of clenbuterol to rats altered the level of taurine in certain tissues. Taurine levels in cardiac tissue were significantly decreased 3 h after the administration of 250g/kg of clenbuterol and remained significantly depressed at 12h post-dose only returning to control values by 24h. The level of taurine in the liver increased 3 h after clenbuterol administration but was lower than the control value at 24 h post dose. Lung taurine levels were significantly lower than the control value at 12 hr post dose and remained depressed until 24h post dose. Clenbuterol caused a significant increase in taurine levels in serum and muscle at 3 and 6 hr postdosing respectively but not at other time points. Serum creatine kinase (CK), activity was slightly but significantly raised at the 12 and 24 h time point.The effects of clenbuterol on tissue taurine content were not dose-dependent over the range studied (63–500g/kg). However taurine levels in the lung were significantly reduced at all doses and in the heart were significantly lower in the treated groups at all except the lowest dose, 12h post dosing. Liver taurine levels were significantly increased at the highest dose of 500g/kg.The reduction of taurine concentrations in the heart, caused by clenbuterol, is of concern as taurine has been shown to have protective properties in many tissues especially the heart.  相似文献   

11.
12.
1. In 28°C adapted rats (WA) both cold stress and norepinephrine (NE) led to a 4-fold increase of uncoupling protein dependent proton conductance which was abolished by propranolol (PRO).2. In 4-day warm re-exposed rats (after 10 days at 5°C) (WR) the same uncoupling by cold stress was observed but the NE effect was lower. Uncoupling by cold stress was not abolished by PRO.3. In WR rats, uncoupling was not due to the involvement of an α-adrenergic pathway.4. Both β-agonist isoproterenol and β-agonists BRL 35135A and ICI D7114 led to high levels of unmasking.5. Interscapular brown adipose tissue surgical denervation, which abolished cold stress unmasking both in WA and WR rats, indicates a mediation by direct sympathetic innervation.6. Depending on the thermal history of the rat, the possibility that unmasking by cold stress could be mediated by different types of β-receptors is discussed.  相似文献   

13.
Endogenous phosphorylation of synapsin I (protein I), a phosphoprotein located on the surface of synaptic vesicles, was studied in vesicles prepared from synaptosomes lysed in the absence (control) or presence of 50 M-cyclic AMP (cAMP-treated). Compared to synaptic plasma membrane (SPM) fractions prepared in parallel, and confirming previous work, the vesicle fractions were highly enriched on a unit protein basis in Ca2+-calmodulin-dependent kinase activity towards synapsin I. In contrast, with control vesicles the magnitude of the total phosphorylation of synapsin I in the presence of cyclic AMP was similar to that observed in SPM, but regulation by cyclic AMP was only partial. In cAMP-treated vesicles, however, synapsin I phosphorylation was highly enriched compared to SPM and the activity was virtually independent of cyclic AMP. The results show that while the free catalytic subunit of the cyclic AMP-dependent kinase remains associated with synapsin I during vesicle isolation the holoenzyme remains bound to membrane fragments, probably through its regulatory subunit.Dedicated to Henry McIlwain.  相似文献   

14.
15.
16.
17.
The dynamics of an electrical scroll wave with the U-shaped filament with both ends of the filament being “anchored” on the endocardial surface and the dependence of the structure of pseudoECG on the dynamics of the vortex during the development of polymorphic tachysystolia have been studied by applying premature stimuli to the “target phase” with subsequent registration of the spatial and temporal distribution of electrical potential throughout the surface (endocardial and epicardial) of a thin (≈1 mm) preparation. It was found that (1) the pseudoECG of the polymorphic form during the tachysystolia attack can be observed in the case that the position of the filament ends on the surfaces of the preparation does not practically change from turn to turn (filament ends are “anchored”); (2) the thread of a scroll wave during this attack can twist and untwin (twisted filament), just as it was the case for scroll waves with a straight filament; (3) in the case of pseudoECG of polymorphic form, the twisting and untwining of the filament were stronger (the angle of maximal twisting was 120 degrees and more), and the angle of twisting changed by a substantially greater value from turn to turn as compared with the pseudoECG of monomorphic form; (4) in the case of pseudoECG of polymorphic form, the time interval between the appearance of waves on the surfaces of the preparation (T epi-endo) was substantially greater and changed to a greater extent from turn to turn of the vortex; and (5) simultaneously with the appearance of pseudoECG of polymorphic form and the onset of changes in the twisting of the scroll and the T epi-endo interval indicated in (2–4), significant changes in the patterns of coverage of the surface by excitation occurred. Based on the results obtained, an explanation of the reasons for the appearance of excitation breakdown patterns on the surface of the myocardium was proposed, which differs from the traditional viewpoint. These patterns may be the result of reflection on myocardial surfaces of the activity of not different simultaneously occurring sources of initiation of excitation but of a single three-dimensional vortex whose filament twists when passing through the thickness of the myocardium and can closely approach one or the other surface.  相似文献   

18.
O-Linked β-N-acetylglucosamine, or O-GlcNAc, is a dynamic post-translational modification that cycles on and off serine and threonine residues of nucleocytoplasmic proteins. The O-GlcNAc modification shares a complex relationship with phosphorylation, as both modifications are capable of mutually inhibiting the occupation of each other on the same or nearby amino acid residue. In addition to diabetes, cancer, and neurodegenerative diseases, O-GlcNAc appears to play a significant role in cell growth and cell cycle progression, although the precise mechanisms are still not well understood. A recent study also found that all four core nucleosomal histones (H2A, H2B, H3, and H4) are modified with O-GlcNAc, although no specific sites on H3 were reported. Here, we describe that histone H3, a protein highly phosphorylated during mitosis, is modified with O-GlcNAc. Several biochemical assays were used to validate that H3 is modified with O-GlcNAc. Mass spectrometry analysis identified threonine 32 as a novel O-GlcNAc site. O-GlcNAc was detected at higher levels on H3 during interphase than mitosis, which inversely correlated with phosphorylation. Furthermore, increased O-GlcNAcylation was observed to reduce mitosis-specific phosphorylation at serine 10, serine 28, and threonine 32. Finally, inhibiting OGA, the enzyme responsible for removing O-GlcNAc, hindered the transition from G2 to M phase of the cell cycle, displaying a phenotype similar to preventing mitosis-specific phosphorylation on H3. Taken together, these data indicate that O-GlcNAcylation regulates mitosis-specific phosphorylations on H3, providing a mechanistic switch that orchestrates the G2-M transition of the cell cycle.  相似文献   

19.
The cleavage of the amyloid precursor protein by β- and γ-secretases is a key event in Alzheimer's disease. A fusion protein was constructed to investigate the cleavage rate and aggregation kinetics of amyloid-beta (1–40) (Aβ(1–40)) peptides. The peptide was expressed with a Small Ubiquitin-Like Modifier (SUMO) on the N-terminus and cleaved by a SUMO protease Ulp1. The time course of the cleavage reaction was monitored by SDS-PAGE gel with 100:1 or 1000:1 SUMO-Aβ(1–40) to Ulp1 molar ratio and in the presence of brain total lipid extract unilamellar vesicles. Similarly, the aggregation of Aβ(1–40) peptides upon cleavage was monitored by thioflavin T fluorescence assays and by circular dichroism. The cleavage reaction was modulated by the concentration of Ulp1, with fast release of Aβ(1–40) peptides producing shorter lag time before fibril formation, but with similar elongation rate. The presence of lipids significantly reduced the cleavage completion at 1000:1, but reduced the lag time before fibril formation, while at 100:1 similar cleavage and aggregation kinetics were observed compared to the lipid-free condition. Overall, the results showed that the fusion protein SUMO-Aβ(1–40) is a means to study the cleavage and aggregation of amyloid peptides and that the presence of lipids and the fast release rate accelerated the aggregation of Aβ(1–40) peptides.  相似文献   

20.
《Peptides》2012,33(12):2459-2466
The aim of the present study was to investigate the protective effect of various doses of exogenous vasopressin (AVP) against ischemia–reperfusion injury in anesthetized rat heart. Anesthetized rats were randomly divided into seven groups (n = 4–13) and all of them subjected to prolonged 30 min regional ischemia and 120 min reperfusion. Group I served as saline control with ischemia, in treatment groups II, III, IV and V, respectively different doses of AVP (0.015, 0.03, 0.06 and 1.2 μg/rat) were infused within 10 min prior to ischemia, in group VI, an AVP-selective V1 receptor antagonist (SR49059, 1 mg/kg, i.v.) was administrated prior to effective dose of AVP injection and in group VII, SR49059 (1 mg/kg, i.v.) was only administrated prior to ischemia. Various doses of AVP significantly prevented the decrease in heart rate (HR) at the end of reperfusion compared to their baseline and decreased infarct size, biochemical parameters [LDH (lactate dehydrogenase), CK-MB (creatine kinase-MB) and MDA (malondialdehyde) plasma levels], severity and incidence of ventricular arrhythmia, episodes and duration of ventricular tachycardia (VT) as compared to control group. Blockade of V1 receptors by SR49059 attenuated the cardioprotective effect of AVP on ventricular arrhythmias and biochemical parameters, but partially returned infarct size to control. AVP 0.03 μg/rat was known as effective dose. Our results showed that AVP owns a cardioprotective effect probably via V1 receptors on cardiac myocyte against ischemia/reperfusion injury in rat heart in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号