首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Cadmium (Cd) interferes with ascorbate and glutathione metabolism as it induces the production of reactive oxygen species (ROS), binds to glutathione due to its high affinity to thiol groups, and induces the production of phytochelatins (PCs) which use glutathione as a precursor. In this study, changes in the compartment specific distribution of ascorbate and glutathione were monitored over a time period of 14 days in Cd-treated (50 and 100 μM) Arabidopsis Col-0 plants, and two mutant lines deficient in glutathione (pad2-1) and ascorbate (vtc2-1). Both mutants showed higher sensitivity to Cd than Col-0 plants. Strongly reduced compartment specific glutathione, rather than decreased ascorbate contents, could be correlated with the development of symptoms in these mutants suggesting that higher sensitivity to Cd is related to low glutathione contents rather than low ascorbate contents. On the subcellular level it became obvious that long-term treatment of wildtype plants with Cd induced the depletion of glutathione and ascorbate contents in all cell compartments except chloroplasts indicating an important protective role for antioxidants in chloroplasts against Cd. Additionally, we could observe an immediate decrease of glutathione and ascorbate in all cell compartments 12 h after Cd treatment indicating that glutathione and ascorbate are either withdrawn from or not redistributed into other organelles after their production in chloroplasts, cytosol (production centers for glutathione) and mitochondria (production center for ascorbate). The obtained data is discussed in respect to recently proposed stress models involving antioxidants in the protection of plants against environmental stress conditions.  相似文献   

2.
3.
4.
5.
The estrogen metabolites catecholestrogens (or hydroxyestrogens) are involved in carcinogenesis and the development of resistance to methotrexate. This induction of drug resistance correlates with the relative efficiency of catecholestrogens in the generation of reactive oxygen species (ROS) and the induction of DNA strand breaks. Although antioxidants can neutralize ROS, the generation of these reactive species by catecholestrogens can be enhanced by electron donors like NADH. Therefore, this study was undertaken to determine the ability of different thiol agents (GSH, NAC, DTT, DHLA) to either inhibit or enhance the level of DNA damage induced by the H(2)O(2) generating system 4-hydroxyestradiol/Cu(II). Our results show that GSH, DTT, and DHLA inhibited the induction of the 4-hydroxyestradiol/Cu(II)-mediated DNA damage, with GSH showing the best potential. In contrast, the GSH precursor NAC at low concentrations was able to enhance the level of oxidative damage, as observed with NADH. NAC can reduce Cu(II) to Cu(I) producing the radical NAC&z.rad;, which can generate the superoxide anion. However, the importance of this pathway appears to be relatively minor since the addition of NAC to the 4-hydroxyestradiol/Cu(II) system generates about 15 times more DNA strand breaks than NAC and Cu(II) alone. We suggest that NAC can perpetuate the redox cycle between the quinone and the semiquinone forms of the catecholestrogens, thereby enhancing the production of ROS. In conclusion, this study demonstrates the crucial importance of the choice of antioxidant as potential therapy against the negative biological effects of estrogens.  相似文献   

6.
In this study, the mitochondrial damage effect and mechanism of zearalenone (ZEA) in swine small intestine IPEC‐J2 cells in vitro were comprehensively characterized. The analyses revealed that ZEA at high doses (8 and 7 μg/mL) can significantly increase P < 0.05 the malondialdehyde levels and decrease antioxidant enzymes activities after 48 h of exposure. Meanwhile, the reactive oxygen species (ROS) accumulation increased in high dose ZEA‐treated groups after 2 h treatment, but decreased due to the ROS‐induced mitochondrial damage and the caused cell apoptosis after 48 h of high does ZEA treatment. Moreover, the decreasing of mitochondrial membrane potential (MMP; ΔΨ) in high dose ZEA exposure was observed in line with the increasing ROS production in mitochondria. Results suggest that ZEA exposure can induce mitochondrial damage by reducing antioxidant enzyme activities, accumulation of ROS, and decreasing MMP. The mitochondrial damage had a dramatic concentration–effects relationship with ZEA.  相似文献   

7.
Selenium (Se) is an essential element for many organisms, but excess Se is toxic. To better understand plant Se toxicity and resistance mechanisms, we compared the physiological and molecular responses of two Arabidopsis (Arabidopsis thaliana) accessions, Columbia (Col)-0 and Wassilewskija (Ws)-2, to selenite treatment. Measurement of root length Se tolerance index demonstrated a clear difference between selenite-resistant Col-0 and selenite-sensitive Ws-2. Macroarray analysis showed more pronounced selenite-induced increases in mRNA levels of ethylene- or jasmonic acid (JA)-biosynthesis and -inducible genes in Col-0 than in Ws-2. Indeed, Col-0 exhibited higher levels of ethylene and JA. The selenite-sensitive phenotype of Ws-2 was attenuated by treatment with ethylene precursor or methyl jasmonate (MeJA). Conversely, the selenite resistance of Col-0 was reduced in mutants impaired in ethylene or JA biosynthesis or signaling. Genes encoding sulfur (S) transporters and S assimilation enzymes were up-regulated by selenite in Col-0 but not Ws-2. Accordingly, Col-0 contained higher levels of total S and Se and of nonprotein thiols than Ws-2. Glutathione redox status was reduced by selenite in Ws-2 but not in Col-0. Furthermore, the generation of reactive oxygen species by selenite was higher in Col-0 than in Ws-2. Together, these results indicate that JA and ethylene play important roles in Se resistance in Arabidopsis. Reactive oxygen species may also have a signaling role, and the resistance mechanism appears to involve enhanced S uptake and reduction.  相似文献   

8.
Hypsizygus marmoreus is an important industrialized mushroom, yet the lack of basic research on this fungus has hindered further development of its economic value. In this study, mycelia injured by scratching were treated with hydrogen-rich water (HRW) to investigate the involvement of the redox system in fruiting body development. Compared to the control group, damaged mycelia treated with HRW regenerated earlier and showed significantly enhanced fruiting body production. Antioxidant capacity increased significantly in damaged mycelia after HRW treatment, as indicated by higher antioxidant enzyme activities and antioxidant contents; the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) were also reduced at the mycelial regeneration stage after treatment with HRW. Furthermore, genes involved in ROS, Ca2+, MAPK and oxylipin signaling pathways were up-regulated by HRW treatment. In addition, laccase and manganese peroxidase activities and mycelial biomass were higher after HRW treatment, suggesting that HRW might enhance the substrate-degradation rate to provide more carbon sources for fruiting body production.  相似文献   

9.
Mitochondria are the main organelles that produce reactive oxygen species (ROS). Overproduction of ROS induces oxidative damage to macromolecules, including lipids, and can damage cellular membrane structure and functions. Mitochondria, the main target of ROS-induced damage, are equipped with a network of antioxidants that control ROS production. Dietary intake of omega-3 polyunsaturated fatty acids (ω3PUFAs) and consequently the increase in ω3PUFA content of membrane lipids may be disadvantageous to the health because ROS-induced oxidative peroxidation of ω3PUFAs within membrane phospholipids can lead to the formation of toxic products. Mitochondrial control of lipid peroxidation is one of the mechanisms that protect cell against oxidative damage. This review discusses the role of mitochondria in ROS generation and the mechanisms by which it regulates ROS production. The susceptibility to peroxidation of PUFAs by ROS raises the question of the adverse effects of ω3PUFA dietary supplementation on embryonic development and prenatal developmental outcomes.  相似文献   

10.
11.
It has been hypothesized that exposure of cells to hyperthermia results in an increased flux of reactive oxygen species (ROS), primarily superoxide anion radicals, and that increasing antioxidant enzyme levels will result in protection of cells from the toxicity of these ROS. In this study, the prostate cancer cell line, PC-3, and its manganese superoxide dismutase (MnSOD)-overexpressing clones were subjected to hyperthermia (43°C, 1 h). Increased expression of MnSOD increased the mitochondrial membrane potential (MMP). Hyperthermic exposure of PC-3 cells resulted in increased ROS production, as determined by aconitase inactivation, lipid peroxidation, and H2O2 formation with a reduction in cell survival. In contrast, PC-3 cells overexpressing MnSOD had less ROS production, less lipid peroxidation, and greater cell survival compared to PC-3 Wt cells. Since MnSOD removes superoxide, these results suggest that superoxide free radical or its reaction products are responsible for part of the cytotoxicity associated with hyperthermia and that MnSOD can reduce cellular injury and thereby enhance heat tolerance.  相似文献   

12.
Anabolic androgenic steroids are used in the sport context to enhance muscle mass and strength and to increase muscle fatigue resistance. Since muscle fatigue has been related to oxidative stress caused by an exercise-linked reactive oxygen species (ROS) production, we investigated the potential effects of a treatment with the anabolic androgenic steroid stanozolol against oxidative damage induced on rat skeletal muscle mitochondria by an acute bout of exhaustive exercise. Mitochondrial ROS generation with complex I- and complex II-linked substrates was increased in exercised control rats, whereas it remained unchanged in the steroid-treated animals. Stanozolol treatment markedly reduced the extent of exercise-induced oxidative damage to mitochondrial proteins, as indicated by the lower levels of the specific markers of protein oxidation, glycoxidation, and lipoxidation, and the preservation of the activity of the superoxide-sensitive enzyme aconitase. This effect was not due to an enhancement of antioxidant enzyme activities. Acute exercise provoked changes in mitochondrial membrane fatty acid composition characterized by an increased content in docosahexaenoic acid. In contrast, the postexercise mitochondrial fatty acid composition was not altered in stanozolol-treated rats. Our results suggest that stanozolol protects against acute exercise-induced oxidative stress by reducing mitochondrial ROS production, in association with a preservation of mitochondrial membrane properties.  相似文献   

13.
Almost half the world's population is infected by Helicobacter pylori (H. pylori). This bacterium increases the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in human stomach, and this has been reported to impact upon gastric inflammation and carcinogenesis. However, the precise mechanism by which H. pylori induces gastric carcinogenesis is presently unclear. Although the main source of ROS/RNS production is possibly the host neutrophil, H. pylori itself produces O???. Furthermore, its cytotoxin induces ROS production by gastric epithelial cells, which might affect intracellular signal transduction, resulting in gastric carcinogenesis. Excessive ROS production in gastric epithelial cells can cause DNA damage and thus might be involved in gastric carcinogenesis. Understanding the molecular mechanism of H. pylori-induced carcinogenesis is important for developing new strategies against gastric cancer.  相似文献   

14.
Accumulation of reactive oxygen species (ROS) causes oxidative stress under adverse environmental conditions, such as salinity. Ethylene decreases accumulation of ROS induced by salinity, but the mechanism is still unclear. To examine the interactions between salinity and ROS accumulation and the possible role of ethylene metabolism in regulation, we used mutant ein2-5 in Arabidopsis with loss of function in EIN2. The mutant is compared to the wild-type Col-0, completely insensitivity to ethylene at the morphological, physiological and molecular levels. The oxidative responses of the wild type and mutant to salinity were compared. Loss-of-function of EIN2 enhanced sensitivity to salinity, implying that EIN2 is required for plant response to salinity. Furthermore, salinity resulted in accumulation of large amounts of ROS in ein2-5 seedlings when compared with Col-0, suggesting that the loss-of-function of EIN2 exaggerates oxidative stress induced by salinity. Activities of the antioxidant enzymes SOD, POD and CAT decreased significantly in ein2-5 under salinity when compared with Col-0 plants. The expression profiles of the genes Fe-SOD, PODs and CAT1, which code for ROS scavenging enzymes were severely decreased in ein2-5 under salinity compared with Col-0, suggesting that EIN2 was involved in regulating expression of these genes. Taken together, our results demonstrate that loss-of-function of EIN2 increased oxidative stress induced by salinity and that EIN2 is involved in modulating ROS accumulation, at least in part, by decreasing activities of ROS-scavenging enzymes.  相似文献   

15.
To understand mechanisms of cadmium (Cd) tolerance variation associated with root elongation in Arabidopsis thaliana , quantitative trait loci (QTLs) and epistasis were analyzed using relative root length (RRL: % of the root length in +Cd to −Cd) as a tolerant index. Using the composite interval mapping method, three major QTLs ( P < 0.05) were detected on chromosomes 2, 4 and 5 in the recombinant inbred population derived from a cross between Landsberg erecta (L er −0) and Columbia (Col-4). The highest logarithm of odds (LOD) of 5.6 was detected with the QTL on chromosome 5 (QTL5), which is linked to the genetic marker CDPK9 and explained about 26% of the Cd tolerance variation. There was no significant difference in Cd-translocation ratio from roots to shoots between tolerant and sensitive recombinant inbreed lines (RILs), while greater accumulations of reactive oxygen species were observed in the roots of sensitive RILs. This suggested that accumulation of ROS would explain Cd tolerance variation of the L er /Col RILs, which is mainly controlled by the QTL on chromosome 5. The QTL5 in L er /Col population was also detected as one of the major QTLs controlling tolerances to hydrogen peroxide and to copper, which is another ROS generating rhizotoxic metal. The same chromosomal position was detected as a common major QTL for Cd and hydrogen peroxide tolerances in a different recombinant inbreed (RI) population derived from a cross of Col- gl1 and Kashmir (Kas-1). These data, along with a multitraits QTL analysis in both sets of RILs, suggest that peroxide damage depends on the genotype at a major Cd-tolerant locus on the upper part of chromosome 5.  相似文献   

16.
Oxygen free radicals have a major impact on senescence of primary human cells. In replicative senescence, which is induced by uncapping of telomeres, the rate of telomere shortening is largely determined by telomere-specific accumulation of DNA damage induced by reactive oxygen species (ROS). More intense ROS-generating stressors can induce premature senescence via generation of telomere-independent DNA damage. Interestingly, ROS levels were also elevated when premature senescence was triggered by pathways downstream or independent of DNA damage. This has led to the suggestion that ROS generation could be a specific component of the signalling pathways inducing senescence. However, the available data are compatible with the concept that senescence is triggered as a DNA damage response. ROS appear to be involved as inducers of DNA damage rather than as specific signalling molecules. The upregulation of ROS production often seen in premature senescence might be related to retrograde response initiated by mitochondria.  相似文献   

17.
Reactive oxygen species and mitochondrial diseases   总被引:4,自引:0,他引:4  
A variety of diseases have been associated with excessive reactive oxygen species (ROS), which are produced mostly in the mitochondria as byproducts of normal cell respiration. The interrelationship between ROS and mitochondria suggests shared pathogenic mechanisms in mitochondrial and ROS-related diseases. Defects in oxidative phosphorylation can increase ROS production, whereas ROS-mediated damage to biomolecules can have direct effects on the components of the electron transport system. Here, we review the molecular mechanisms of ROS production and damage, as well as the existing evidence of mitochondrial ROS involvement in human diseases.  相似文献   

18.
While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production.  相似文献   

19.
Schisandra chinensis is a traditional Chinese medicine that has multiple biological activities, including antioxidant, anticancer, tonic, and anti-aging effects. Deoxyschisandrin (SA) and schisandrin B (SB), the two major lignans isolated from S. chinensis, exert high antioxidant activities in vitro and in vivo by scavenging free radicals, such as reactive oxygen species (ROS). Ultraviolet B-ray (UVB) radiation induces the production of ROS and DNA damage, which eventually leads to cell death by apoptosis. However, it is unknown whether SA or SB protects cells against UVB-induced cellular DNA damage. Our study showed that both SA and SB effectively protected HaCaT cells from UVB-induced cell death by antagonizing UVB-mediated production of ROS and induction of DNA damage. Our results showed that both SA and SB significantly prevented UVB-induced loss of cell viability using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assays showed that the production of ROS following UVB exposure was inhibited by treatment with SA and SB. Moreover, SA and SB decreased the UVB-induced DNA damage in HaCaT cells by comet assays. In addition, SA and SB also prevented UVB-induced cell apoptosis and the cleavage of caspase-3, caspase-8 and caspase-9. In a word, our results imply that the antioxidants SA and SB could protect cells from UVB-induced cell damage via scavenging ROS.  相似文献   

20.
灵芝Ganoderma lingzhi是最著名的药用真菌之一。本文研究了60%高氧条件下灵芝子实体呼吸速率、灵芝酸(ganoderic acid,GA)含量、总酚含量、活性氧(reactive oxygen species,ROS)含量、丙二醛(malondialdehyde,MDA)含量、抗氧化酶活性、黄嘌呤氧化酶(xanthineoxidase,XOD)活性、琥珀酸脱氢酶(succinic dehydrogenase,SDH)活性、H +-ATP酶活性、Ca 2+-ATP酶活性的变化。结果显示,高氧抑制灵芝子实体的呼吸速率;处理前期(第1天),灵芝子实体内过氧化氢(H2O2)和超氧阴离子自由基(O2 -?)含量高于对照组,但随着处理的进行,ROS含量显著减少,MDA积累减少,超氧化物歧化酶(superoxide dismutase,SOD)、过氧化氢酶(catalase,CAT)和SDH活性提高,GA和总酚含量增加。表明一定的环境胁迫压力可以激发灵芝启动自身的抗氧化系统,保护机体免受氧化损伤,并促进相关次生代谢产物的合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号