首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Dysregulation of the ceramide transport protein CERT is associated to diseases such as cancer. In search for new CERT START domain ligands, N-dodecyl-deoxynojirimycin (N-dodecyl-DNJ) iminosugar was found to display, as a ceramide mimic, significant protein recognition. To reinforce the lipophilic interactions and strengthen this protein binding, a docking study was carried out in order to select the optimal position on which to introduce an additional O-alkyl chain on N-dodecyl-DNJ. Analysis of the calculated poses for three different regioisomers indicated an optimal calculated interaction pattern for N,O3-didodecyl-DNJ. The two most promising regioisomers were prepared by a divergent route and their binding to the CERT START domain was evaluated with fluorescence intensity (FLINT) binding assay. N,O3-didodecyl-DNJ was confirmed to be a new binder prototype with level of protein recognition in the FLINT assay comparable to the best known ligands from the alkylated HPA-12 series. This work opens promising perspectives for the development of new inhibitors of CERT-mediated ceramide trafficking.  相似文献   

2.
The molecular docking computer program SANDOCK was used to screen small molecule three-dimensional databases in the hunt for novel FKBP inhibitors. Spectroscopic measurements confirmed binding of over 20 compounds to the target protein, some with dissociation constants in the low micromolar range. The discovery that FK506 binding protein is a steroid binding protein may be of wider biological significance. Two-dimensional NMR was used to determine the steroid binding mode and confirmed the interactions predicted by the docking program.  相似文献   

3.
Three-dimensional structure models of the ligand-binding domain of the ecdysone receptor of Heliothis virescens were built by the homology modeling technique from the crystal structures of nuclear receptors. Two models were created based both on known ligand-binding domain structures of the receptors with the highest sequence identity to the ecdysone receptor, and on those of steroid hormone receptors. The latter model, which was found to have better stereochemical quality and be in good agreement with the binding of the steroidal framework of the endogenous agonist 20-hydroxyecdysone, was used for docking studies. The docking of 20-hydroxyecdysone to the receptor model revealed that the ligand molecule can interact with the receptor in a similar manner to other steroid hormone-receptor complexes. The docking of a dibenzoylhydrazine agonist, chromafenozide, was performed based on the correspondences between the molecule and 20-dydroxyecdysone expected by molecular comparison. The interactions of the ligands with the receptor in the complexes modeled were investigated and found to be consistent with known structure-activity relationships.  相似文献   

4.
Protein-mediated cholesterol trafficking is central to maintaining cholesterol homeostasis in cells. START (Steroidogenic acute regulatory protein-related lipid transfer) domains constitute a sterol and lipid binding motif and the START domain protein StARD4 typifies a small family of mammalian sterol transport proteins. StARD4 consists of a single START domain and has been reported to act as a general cholesterol transporter in cells. However, the structural basis of cholesterol uptake and transport is not well understood and no cholesterol-bound START domain structures have been reported. We have undertaken the study of cholesterol binding and transport by StARD4 using solution state NMR spectroscopy. To this end, we report nearly complete 1H, 15N, and 13C backbone resonance assignments of an inactive but well behaved mutant (L124D) of StARD4.  相似文献   

5.
Steroidogenic acute regulatory (StAR)—related lipid transfer proteins possess a START (steroidogenic acute regulatory-related lipid transfer) domain. START domains are conserved protein modules involved in the non-vesicular intracellular transport of lipids and cholesterol in mammals. Fifteen mammalian proteins, divided in five subfamilies, are reported to possess a START domain. Members of the STARD4 subfamily, i.e. STARD4, 5 and 6 are essentially single START domains and are thought to be involved in the intracellular transport of cholesterol. No structure of a cholesterol-bound START domain from this family has been resolved yet. The determination of the structure of such a complex would contribute to a better understanding of the mechanism of ligand binding and transport by START domains, two unresolved aspects of their structural biology. In this context, we have undertaken the structure determination of a ligand-bound form of STARD5 by NMR. Here, we report the 1H, 13C and 15N backbone resonance assignments of the ligand-free STARD5.  相似文献   

6.
The StAR-related lipid transfer (START) domain, first identified in the steroidogenic acute regulatory protein (StAR), is involved in the intracellular trafficking of lipids. Sixteen mammalian START domain-containing proteins have been identified to date. StAR, a protein targeted to mitochondria, stimulates the movement of cholesterol from the outer to the inner mitochondrial membranes, where it is metabolized into pregnenolone in steroidogenic cells. MLN64, the START domain protein most closely related to StAR, is localized to late endosomes along with other proteins involved in sterol trafficking, including NPC1 and NPC2, where it has been postulated to participate in sterol distribution to intracellular membranes. To investigate the role of MLN64 in sterol metabolism, we created mice with a targeted mutation in the Mln64 START domain, expecting to find a phenotype similar to that in humans and mice lacking NPC1 or NPC2 (progressive neurodegenerative symptoms, free cholesterol accumulation in lysosomes). Unexpectedly, mice homozygous for the Mln64 mutant allele were viable, neurologically intact, and fertile. No significant alterations in plasma lipid levels, liver lipid content and distribution, and expression of genes involved in sterol metabolism were observed, except for an increase in sterol ester storage in mutant mice fed a high fat diet. Embryonic fibroblast cells transfected with the cholesterol side-chain cleavage system and primary cultures of granulosa cells from Mln64 mutant mice showed defects in sterol trafficking as reflected in reduced conversion of endogenous cholesterol to steroid hormones. These observations suggest that the Mln64 START domain is largely dispensable for sterol metabolism in mice.  相似文献   

7.
8.
We are reporting the discovery of small molecule inhibitors for vascular endothelial growth factor receptor type 2 (VEGFR-2) extracellular domain. The VEGFR-2 extracellular domain is responsible for the homo-dimerization process, which has been recently reported as a main step in VEGFR signal transduction cascade. This cascade is essential for the vascularization and survival of most types of cancers. Two main design strategies were used; Molecular docking-based Virtual Screening and Fragment Based Design (FBD). A virtual library of drug like compounds was screened using a cascade of docking techniques in order to discover an inhibitor that binds to this new binding site. Rapid docking methodology was used first to filter the large number of compounds followed by more accurate and slow ones. Fragment based molecular design was adopted afterwards due to unsatisfactory results of screening process. Screening and design process resulted in a group of inhibitors with superior binding energies exceeding that of the natural substrate. Molecular dynamics simulation was used to test the stability of binding of these inhibitors and finally the drug ability of these compounds was assisted using Lipinski rule of five. By this way the designed compounds have shown to possess high pharmacologic potential as novel anticancer agents.  相似文献   

9.
Iyer LM  Koonin EV  Aravind L 《Proteins》2001,43(2):134-144
With a protein structure comparison, an iterative database search with sequence profiles, and a multiple-alignment analysis, we show that two domains with the helix-grip fold, the star-related lipid-transfer (START) domain of the MLN64 protein and the birch allergen, are homologous. They define a large, previously underappreciated superfamily that we call the START superfamily. In addition to the classical START domains that are primarily involved in eukaryotic signaling mediated by lipid binding and the birch antigen family that consists of plant proteins implicated in stress/pathogen response, the START superfamily includes bacterial polyketide cyclases/aromatases (e.g., TcmN and WhiE VI) and two families of previously uncharacterized proteins. The identification of this domain provides a structural prediction of an important class of enzymes involved in polyketide antibiotic synthesis and allows the prediction of their active site. It is predicted that all START domains contain a similar ligand-binding pocket. Modifications of this pocket determine the ligand-binding specificity and may also be the basis for at least two distinct enzymatic activities, those of a cyclase/aromatase and an RNase. Thus, the START domain superfamily is a rare case of the adaptation of a protein fold with a conserved ligand-binding mode for both a broad variety of catalytic activities and noncatalytic regulatory functions. Proteins 2001;43:134-144.  相似文献   

10.
A new series of ligands for the glucocorticoid receptor (GR) is described. SAR development was guided by docking 3 into the GR active site and optimizing an unsubstituted phenyl ring for key interactions found in the steroid A-ring binding pocket. To identify compounds with an improved side effect profile over marketed steroids the functional activity of compounds was evaluated in cell based assays for transactivation (aromatase) and transrepression (IL-6). Through this effort, 36 has been identified as a partial agonist with a dissociated profile in these cell based assays.  相似文献   

11.
The steroidogenic acute regulatory (StAR)-related lipid transfer (START) domains are found in a wide range of proteins involved in intracellular trafficking of cholesterol and other lipids. Among the START proteins are the StAR protein itself (STARD1) and the closely related MLN64 protein (STARD3), which both function in cholesterol movement. We compared the cholesterol-binding properties of these two START domain proteins. Cholesterol stabilized STARD3-START against trypsin-catalyzed degradation, whereas cholesterol had no protective effect on STARD1-START. [(3)H]Azocholestanol predominantly labeled a 6.2 kDa fragment of STARD1-START comprising amino acids 83-140, which contains residues proposed to interact with cholesterol in a hydrophobic cavity. Photoaffinity labeling studies suggest that cholesterol preferentially interacts with one side wall of this cavity. In contrast, [(3)H]azocholestanol was distributed more or less equally among the polypeptides of STARD3-START. Overall, our results provide evidence for differential cholesterol binding of the two most closely related START domain proteins STARD1 and STARD3.  相似文献   

12.
用分子对接方法预测天然植物化学物质与受体蛋白的相互作用位点并探究作用机制。利用MVD(Molecular Virtual Docker 5.5)软件,以HER-2激酶区为受体模板建立活性位点,与12种花青素成分进行分子对接。结果表明12种化合物均能在同一活性腔中与HER-2激酶区对接(MolDock Score:苷元–105 kJ/mol,单葡糖苷–130 kJ/mol),主要作用力是疏水作用和氢键;该活性腔也是ATP与HER-2激酶区的结合(MolDock Score=–161 kJ/mol)位点,花青素的结合可能会干扰ATP与HER-2之间氢键的形成。提示花青素可能以竞争性结合方式阻碍ATP与HER-2的结合,抑制HER-2磷酸化激活及下游信号通路的激活,从而发挥抑癌活性。  相似文献   

13.
Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation.  相似文献   

14.
Abscisic acid (ABA) receptors belong to the START domain superfamily, which encompasses ligand‐binding proteins present in all kingdoms of life. START domain proteins contain a central binding pocket that, depending on the protein, can couple ligand binding to catalytic, transport or signaling functions. In Arabidopsis, the best characterized START domain proteins are the 14 PYR/PYL/RCAR ABA receptors, while the other members of the superfamily do not have assigned ligands. To address this, we used affinity purification of biotinylated proteins expressed transiently in Nicotiana benthamiana coupled to untargeted LC‐MS to identify candidate binding ligands. We optimized this method using ABA–PYL interactions and show that ABA co‐purifies with wild‐type PYL5 but not a binding site mutant. The Kd of PYL5 for ABA is 1.1 μm , which suggests that the method has sufficient sensitivity for many ligand–protein interactions. Using this method, we surveyed a set of 37 START domain‐related proteins, which resulted in the identification of ligands that co‐purified with MLBP1 (At4G01883) or MLP165 (At1G35260). Metabolite identification and the use of authentic standards revealed that MLBP1 binds to monolinolenin, which we confirmed using recombinant MLBP1. Monolinolenin also co‐purified with MLBP1 purified from transgenic Arabidopsis, demonstrating that the interaction occurs in a native context. Thus, deployment of this relatively simple method allowed us to define a protein–metabolite interaction and better understand protein–ligand interactions in plants.  相似文献   

15.
16.
ABCC1 is a member of the ATP-binding Cassette super family of transporters, actively effluxes xenobiotics from cells. Clinically, ABCC1 expression is linked to cancer multidrug resistance. Substrate efflux is energised by ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) and inhibition of these events may help combat drug resistance. The aim of this study is to identify potential inhibitors of ABCC1 through virtual screening of National Cancer Institute (NCI) compounds. A threedimensional model of ABCC1 NBD2 was generated using MODELLER whilst the X-ray crystal structure of ABCC1 NBD1 was retrieved from the Protein Data Bank. A pharmacophore hypothesis was generated based on flavonoids known to bind at the NBDs using PHASE, and used to screen the NCI database. GLIDE was employed in molecular docking studies for all hit compounds identified by pharmacophore screening. The best potential inhibitors were identified as compounds possessing predicted binding affinities greater than ATP. Approximately 5% (13/265) of the hit compounds possessed lower docking scores than ATP in ABCC1 NBD1 (NSC93033, NSC662377, NSC319661, NSC333748, NSC683893, NSC226639, NSC94231, NSC55979, NSC169121, NSC166574, NSC73380, NSC127738, NSC115534), whereas approximately 7% (7/104) of docked NCI compounds were predicted to possess lower docking scores than ATP in ABCC1 NBD2 (NSC91789, NSC529483, NSC211168, NSC318214, NSC116519, NSC372332, NSC526974). Analyses of docking orientations revealed P-loop residues of each NBD and the aromatic amino acids Trp653 (NBD1) and Tyr1302 (NBD2) were key in interacting with high-affinity compounds. On the basis of docked orientation and docking score the compounds identified may be potential inhibitors of ABCC1 and require further pharmacological analysis.

Abbreviations

ABC - ATP-binding cassette, DHS - dehydrosilybin, MDR - multidrug resistance, NBD - nucleotide-binding domain, PDB - protein data bank.  相似文献   

17.
Recently identified StarD5 belongs to the StarD4 subfamily, a subfamily of steroidogenic acute regulatory related lipid transfer (START) domain proteins that includes StarD4 and StarD6, proteins whose functions remain unknown. The objective of this study was to confirm StarD5's protein localization and sterol binding capabilities as measures to pursue function. Using rabbit polyclonal antibody against newly purified human histidine-tagged/StarD5 protein, StarD5 was detected in human liver. In parallel studies, increased expression of StarD5 in primary hepatocytes led to a marked increase in microsomal free cholesterol. Cell fractionation studies demonstrated StarD5 protein in liver cytosolic fractions only, suggesting StarD5 as a directional cytosolic sterol carrier. Supportive in vitro binding assays demonstrated a concentration-dependent binding of cholesterol by StarD5 similar to that of the cholesterol binding START domain protein StarD1. In contrast to selective cholesterol binding by StarD1, StarD5 bound the potent regulatory oxysterol, 25-hydroxycholesterol, in a concentration-dependent manner. StarD5 binding appeared selective for cholesterol and 25-hydroxycholesterol, as no binding was observed for other tested sterols. The ability of StarD5 to bind not only cholesterol but also 25-hydroxycholesterol, a potent inflammatory mediator and regulatory oxysterol, raises basic fundamental questions about StarD5's role in the maintenance of cellular cholesterol homeostasis.  相似文献   

18.
A series of non-peptide inhibitors targeting the polo-box domain (PBD) of polo-like kinase 1 (Plk1) was designed based on the potent and selective minimal tripeptide Plk1 PBD inhibitor. Seven compounds were designed, synthesized and evaluated for fluorescence polarization (FP) assay. The most promising compound 10 bound to Plk1 PBD with IC50 of 3.37 μM and had no binding to Plk2 PBD or Plk3 PBD at 100 μM. Molecular docking study was performed and possible binding mode was proposed. MM/GBSA binding free energy calculation were in agreement with the observed experimental results. These novel non-peptide selective Plk1 PBD inhibitors provided new lead compounds for further optimization.  相似文献   

19.
The glucocorticoid receptors (GR) are members of the nuclear receptor superfamily that regulate growth, development, and many of the biological functions, including metabolism and inflammation, in a ligand dependent behavior. Thus, GRs are vital as therapeutic targets with steroid hormones and steroidal analogues, especially including the glucocorticoids. Studying the molecular mechanism of binding between GR and ligands is fundamentally important to develop applications in the pharmacological industry. The present study was carried out via molecular docking and molecular dynamic (MD) simulations of three GR-ligand complexes formed between the ligand binding domain (LBD) of GR with cortisol (a natural steroid), dexamethasone (a well-known synthetic steroid drug), and chonemorphine (a steroid virtually screened from the “Sri Lankan Flora” web-based information system). The investigation was mainly carried out in terms of macroscopic properties of the ligand-protein interactions and conformational fluctuations of the protein. The results indicated greater stability and a similar behavior of the GR protein in the chonemorphine-GR complex, compared to the other two complexes, GR-dexamethasone and GR-cortisol, in an aqueous medium. The integrity of the protein-substrate complexes was preserved by strong hydrogen bonds formed between the amino acid residues of the binding site of the proteins and ligands. The findings revealed that chonemorphine is a promising agonist to GR and may produce a pharmacological effect like that produced by glucocorticoids. Thus, the obtained knowledge could lead to further investigations of the pharmaceutical potential of chonemorphine and biological functions of GR in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号