首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
3.
4.
DAX-1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on the X chromosome, gene 1) (NROB1) is an atypical member of the nuclear receptor family, which lacks the classical zinc finger DNA binding domain and acts as a coregulator of a number of nuclear receptors. In this study, we have found that DAX-1 is a novel coregulator of the orphan nuclear receptor Nur77 (NR4A1). We demonstrate that DAX-1 represses the Nur77 transactivation by transient transfection assays. Specific interaction between Nur77 and DAX-1 was detected by coimmunoprecipitation, yeast two-hybrid, and glutathione-S-transferase pull-down assays. The ligand binding domain of DAX-1 and the activation function-2 domain of Nur77 were determined as the direct interaction domains between DAX-1 and Nur77. In vitro competition binding assay showed that DAX-1 repressed Nur77 transactivation through the competition with steroid receptor coactivator-1 for the binding of Nur77. Moreover, DAX-1 repressed Nur77- and LH-dependent increase of cytochrome P450 protein 17 promoter activity in transient transfection assays. Furthermore, Nur77-mediated transactivation was significantly increased by down-regulation of DAX-1 expression with DAX-1 small interfering RNA in testicular Leydig cell line, K28. LH treatment induced a transient increase in Nur77 mRNA, whereas LH repressed DAX-1 expression in a time- and dose-dependent manner in K28 cells. In addition, immunohistochemical analysis showed the expression of Nur77 in mouse testicular Leydig cells. These results suggest that DAX-1 acts as a novel coregulator of the orphan nuclear receptor Nur77, and that the DAX-1 may play a key role in the regulation of Nur77-mediated steroidogenesis in testicular Leydig cells.  相似文献   

5.
6.
Bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE.2H(2)O) is a component of commercial liquid epoxy resins commonly used in the food-packing industry and in dental sealants. There is evidence that it has significant estrogenic activity. Nur77 plays a crucial role in the regulation of certain genes involved in LH-mediated steroidogenesis in testicular Leydig cells. It was previously demonstrated that Bisphenol A (BPA) stimulates Nur77 gene induction and steroidogenesis. In this study, we investigated the effects of BADGE.2H(2)O on Nur77 gene expression and steroidogenesis. Northern blot analysis showed that it increased the expression of Nur77 mRNA and protein, and transient transfection assays demonstrated that it increased the promoter activity and transactivation of Nur77. It also increased the expression of certain steroidogenic genes, such as StAR and 3 beta-HSD. Finally, over-expression of a dominant negative Nur77 cDNA via adenoviral infection reduced BADGE.2H(2)O-mediated progesterone biosynthesis. These results indicate that BADGE.2H(2)O disrupts testicular steroidogenesis by increasing Nur77 gene expression.  相似文献   

7.
CKLFSF is a protein family that serves as a functional bridge between chemokines and members of the transmembrane 4 superfamily (TM4SF). In the course of evolution, CKLFSF2 has evolved as two isoforms, namely CKLFSF2A and CKLFSF2B, in mice. CKLFSF2A, also known as CMTM2A and ARR19, is expressed in the testis and is important for testicular steroidogenesis. CKLFSF2B is also known to be highly expressed in the testis. In the prepubertal stage, CKLFSF2B is expressed only in Leydig cells, but it is highly expressed in haploid germ cells and Leydig cells in adult testis. CKLFSF2B is naturally processed inside the cell at its C-terminus to yield smaller proteins compared to its theoretical size of ≈25?kDa. The Cklfsf2b gene is regulated by GATA-1 and CREB protein, binding to their respective binding elements present in the 2-kb upstream promoter sequence. In addition, the overexpression of CKLFSF2B inhibited the activity of the Nur77 promoter, which consequently represses the promoter activity of Nur77-target steroidogenic genes such as P450c17, 3β-HSD, and StAR in MA-10 Leydig cells. Adenovirus-mediated overexpression of CKLFSF2B in primary Leydig cells isolated from adult mice shows a repression of steroidogenic gene expression and consequently testosterone production. Moreover, intratesticular injection of CKLFSF2B-expressing adenovirus in adult mice clearly had a repressive effect compared to the control injected with only GFP-expressing adenovirus. Altogether, these findings suggest that CKLFSF2B might be involved in the development and function of Leydig cells and regulate testicular testosterone production by fine-tuning the expression of steroidogenic genes.  相似文献   

8.
Specific phase relation of serotonin and dopamine modulate the hypothalamo–hypophyseal–gonadal axis as well as photosexual responses in Japanese quail, but the effect of these specific phase relations on testicular activity and steroidogenesis is not yet been investigated. We hypothesized that temporal phase relation induced alteration in local testicular gonadotropin-releasing hormone (GnRH)–Gonadotropin-inhibitory hormone (GnIH) and their receptor system may modulate the testicular activity and steroidogenesis through local (paracrine and autocrine) action. To validate this hypothesis, we have checked the alterations in the expression of gonadotropin-releasing hormone receptor (GnRH-R), gonadotropin-inhibitory hormone receptor (GnIH-R) messenger RNA (mRNA), growth hormone receptor (GH-R), proliferating cell nuclear antigen (PCNA), cell communication and gap junctional proteins (14-3-3 and connexin-43 [Cnx-43]), steroidogenic factor-1 (SF-1), steroidogenic acute regulatory (StAR) protein, steroidogenic enzyme (3β-hydroxysteroid dehydrogenase [3β-HSD]) in testis as well as androgen receptor (AR) in testis and epididymis of control, 8-, and 12-hr quail. Experimental findings clearly indicate the increased expression of GnIH-R mRNA and suppression of GnRH-R, GH-R, PCNA, 14-3-3, Cnx-43, SF-1, StAR, 3β-HSD in testis as well as AR in testis and epididymis in 8-hr quail, while 12-hr quail exhibited the opposite results that is significantly decreased expression of GnIH-R mRNA and increased expression of GnRH-R, GH-R, PCNA, 14-3-3, Cnx-43, SF-1, StAR, 3β-HSD in testis as well as AR in testis and epididymis. The significantly increased intratesticular testosterone has been observed in the 12-hr quail while, 8-hr quail showed opposite result. Hence, it can be concluded that 12-hr quail showed significantly increased testicular activity and steroidogenesis while opposite pattern was observed in 8-hr quail.  相似文献   

9.
Administration of pharmacological doses of glucocorticoid to male rats in vivo suppresses adrenal steroidogenesis and inhibits testicular steroidogenesis by inhibiting the anterior pituitary secretion of LH. In contrast, administration of ACTH to these pharmacologically-suppressed rats stimulates the adrenal secretion of progesterone and testicular steroidogenesis. The mechanism by which ACTH increases testicular steroidogenesis is dependent on the presence of the adrenal gland and is reproduced by the administration of progesterone. The conclusion from these data is that the adrenal gland has an important role in generating external signals that modulate the hypothalamic-pituitary-gonadal axis in male rats. The adrenal secretion of glucocorticoid acts as a negative signal to testicular steroidogenesis whereas progesterone acts as a positive signal. The adrenal secretion of progesterone and its conversion to testosterone by steroidogenic enzymes in the cytoplasm of the Leydig cell may provide an alternative pathway for testosterone biosynthesis and may account for the increased plasma testosterone levels during the acute phase of stress and mating.  相似文献   

10.
11.
Testes from mice aged 3, 15, 25, 30 or 60 days were incubated under basal conditions or in the presence of hCG. One testis from each animal was incubated at 37 degrees C while the contralateral testis was incubated at 32 or 34 degrees C. During development total androgen production in response to hCG (at 32 degrees C) showed a marked increase between 15 and 30 days. The major androgens secreted at this time were testosterone and 5 alpha-androstane-3 alpha,17 beta-diol. There was little change in total androgen production between 30 and 60 days but by 60 days testosterone was the dominant androgen. Both basal and hCG-stimulated androgen production were temperature sensitive. These effects were most pronounced at 30 and 60 days with androgen production significantly inhibited at 37 degrees C. To examine the role of testicular descent in regulating steroidogenesis animals were rendered unilaterally cryptorchid at 19 days of age. At 25 days, when descent is normally completed in the mouse, there was no significant difference in steroidogenesis between scrotal and abdominal testes. By 30 days, however, the steroidogenic potential of the abdominal testis was significantly lower than that of the scrotal testis. These results show that testicular steroidogenesis is sensitive to temperature changes around the time of testicular descent, although descent itself is not required to achieve an adult level of steroidogenesis. The results also show, however, that testicular descent is required to maintain the adult level of steroidogenesis.  相似文献   

12.
13.
14.
Prostate cancer (PCa) is the second most common cancer in men. Androgen deprivation therapy (ADT) leads to tumor involution and reduction of tumor burden. However, tumors eventually reemerge that have overcome the absence of gonadal androgens, termed castration resistant PCa (CRPC). Theories underlying the development of CRPC include androgen receptor (AR) mutation allowing for promiscuous activation by non-androgens, AR amplification and overexpression leading to hypersensitivity to low androgen levels, and/or tumoral uptake and conversion of adrenally derived androgens. More recently it has been proposed that prostate tumor cells synthesize their own androgens through de novo steroidogenesis, which involves the step-wise synthesis of androgens from cholesterol. Using the in vivo LNCaP PCa xenograft model, previous data from our group demonstrated that a hypercholesterolemia diet potentiates prostatic tumor growth via induction of angiogenesis. Using this same model we now demonstrate that circulating cholesterol levels are significantly associated with tumor size (R = 0.3957, p = 0.0049) and intratumoral levels of testosterone (R = 0.41, p = 0.0023) in LNCaP tumors grown in hormonally intact mice. We demonstrate tumoral expression of cholesterol uptake genes as well as the spectrum of steroidogenic enzymes necessary for androgen biosynthesis from cholesterol. Moreover, we show that circulating cholesterol levels are directly correlated with tumoral expression of CYP17A, the critical enzyme required for de novo synthesis of androgens from cholesterol (R = 0.4073, p = 0.025) Since hypercholesterolemia does not raise circulating androgen levels and the adrenal gland of the mouse synthesizes minimal androgens, this study provides evidence that hypercholesterolemia increases intratumoral de novo steroidogenesis. Our results are consistent with the hypothesis that cholesterol-fueled intratumoral androgen synthesis may accelerate the growth of prostate tumors, and suggest that treatment of CRPC may be optimized by inclusion of cholesterol reduction therapies in conjunction with therapies targeting androgen synthesis and the AR.  相似文献   

15.
16.
Study of androgen receptor functions by genetic models   总被引:2,自引:0,他引:2  
  相似文献   

17.
We examined the effect of restraint stress (3 hr) on plasma LH and testosterone levels, on the Leydig cell LH/hCG receptor, and on the activity of enzymes in the testicular steroidogenic pathway of the adult rat. Restraint stress caused a 47% reduction in plasma testosterone concentrations, but had no effect on plasma LH levels. The binding capacity and affinity of Leydig cell LH/hCG receptors were not affected by restraint. Stress did not affect the testicular activity of 20,22 desmolase or 3 beta-hydroxysteroid dehydrogenase, but testicular interstitial cells of stressed rats incubated in vitro with progesterone as a substrate produced more 17 alpha-hydroxyprogesterone but less testosterone than control cells, and when incubated with 17 alpha-hydroxypregnenolone, produced 39% less androstenedione and 40% less testosterone than control cells. These results suggest that restraint stress inhibited 17,20 desmolase but not 17 alpha-hydroxylase activity. When the delta 4 pathway was blocked with cyanoketone (3 beta-HSD inhibitor), stress did not alter the production of pregnenolone or 17 alpha-hydroxypregnenolone, but the production of dehydroepiandrosterone by cells from stressed rats was subnormal, suggesting again a reduction of 17,20 desmolase activity. The data suggest that a major site of the inhibitory action of restraint stress on testicular steroidogenesis is the 17,20 desmolase step. The disruption of androgen production by restraint appears to be LH independent since stress did not affect plasma LH levels, the binding capacity or affinity of LH/hCG receptors, or the activity of 20,22 desmolase.  相似文献   

18.
The presence of androgen receptors in the ovaries of several vertebrate species, including Atlantic croaker, suggests that androgens may have important roles in ovarian function. In the current study the effects of androgens on ovarian steroidogenesis in Atlantic croaker were investigated. Addition of 17beta-hydroxy-5alpha-androstan-3-one (DHT), 11-ketotestosterone (11-KT), or Mibolerone to ovarian incubations caused dose-dependent decreases in gonadotropin-stimulated in vitro estradiol production, which was not reversed by cotreatment with the antiandrogens, cyproterone acetate or 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene. Androgen treatment also caused significant decreases in estradiol production in the presence of 17-hydroxyprogesterone, which suggests that the site of androgen action is downstream of this steroid in the steroidogenic pathway. The mechanism of androgen action on ovarian steroidogenesis was also investigated. Coincubation with actinomycin D did not reverse the inhibitory effect of the androgens, which suggests that the mechanism of androgen action is nongenomic. An androgen conjugated to bovine serum albumin (DHT-BSA), which does not enter the cell, also caused inhibition of estradiol production in vitro, indicating that the androgen is acting at the cell surface. In addition, time course experiments revealed that the androgen action is rapid; 5-min exposure to DHT was sufficient to cause a significant reduction in estradiol production. Finally, preliminary evidence was obtained for the existence of a high-affinity, low-capacity androgen binding site in croaker ovarian plasma membranes. These studies suggest that androgens can down-regulate estrogen production in croaker ovaries via a rapid, cell surface-mediated, nongenomic mechanism.  相似文献   

19.
Propylthiouracil (PTU) is a thioamide drug used clinically to inhibit thyroid hormone production. However, PTU is associated with some side effects in different organs. In the present study, the acute and direct effects of PTU on testosterone production in rat Leydig cells were investigated. Leydig cells were isolated from rat testes, and an investigation was performed on the effects of PTU on basal and evoked-testosterone release, the functions of steroidogenic enzymes, including protein expression of cytochrome P450 side-chain cleavage enzyme (P450(scc)) and mRNA expression of the steroidogenic acute regulatory protein (StAR). Rat Leydig cells were challenged with hCG, forskolin, and 8-bromo-cAMP to stimulate testosterone release. PTU inhibited both basal and evoked-testosterone release. To study the effects of PTU on steroidogenesis, steroidogenic precursor-stimulated testosterone release was examined. PTU inhibited pregnenolone production (i.e., it diminished the function of P450(scc) in Leydig cells). In addition to inhibiting hormone secretion, PTU also regulated steroidogenesis by diminishing mRNA expression of StAR. These results suggest that PTU acts directly on rat Leydig cells to diminish testosterone production by inhibiting P450(scc) function and StAR expression.  相似文献   

20.
Nur77 (NR4A1) plays an important role in various inflammatory responses. Nur77 is rapidly degraded in cells and its protein level is critically controlled. Although few E3 ligases regulating the Nur77 protein have been defined, the deubiquitinase (DUB) responsible for Nur77 stability has not been reported to date. We identified ovarian tumor domain-containing ubiquitin aldehyde binding protein 1 (OTUB1) as a DUB that stabilizes Nur77 by preventing its proteasomal degradation. We found that OTUB1 interacted with Nur77 to deubiquitinate it, thereby stabilizing Nur77 in an Asp88-dependent manner. This suggests that OTUB1 targets Nur77 for deubiquitination via a non-canonical mechanism. Functionally, OTUB1 inhibited TNFα-induced IL-6 production by promoting Nur77 protein stability. OTUB1 modulated the stability of Nur77 as a counterpart of tripartite motif 13 (Trim13). That is, OTUB1 reduced the ubiquitination and degradation of Nur77 potentiated by Trim13. In addition, this DUB also inhibited IL-6 production, which was further amplified by Trim13 in TNFα-induced responses. These findings suggest that OTUB1 is an important regulator of Nur77 stability and plays a role in controlling the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号