首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Here, we report the results of molecular cloning and expression analyses of a non-clustered protocadherin (pcdh), pcdh18 in zebrafish embryos. The predicted zebrafish pcdh18 protein shows 6566% identity and 7879% homology with its mammalian and Xenopus counterparts. It has a Disabled-1 binding motif in its cytoplasmic domain, which is characteristic of pcdh18. Zebrafish embryos expressed pcdh18 by the early gastrula stage, 6 h post-fertilization (hpf), in their animal cap but not in the germ ring or the shield. pcdh18 was expressed in the neural tube and the central nervous system (CNS) from 12 hpf. Some populations of cells in the lateral neural tube and spinal cord of 1218 hpf embryos expressed pcdh18, but expression in these cells disappeared by 24 hpf. The hindbrain of embryos at 2456 hpf expressed pcdh18 in cells closely adjacent to the rostral and caudal rhombomeric boundaries in a thread-like pattern running in the dorsoventral direction. The pcdh18-positive cells were localized in the ventral part of the hindbrain at 24 hpf and in the dorsal part from 36 hpf. pcdh18 was also expressed in the telencephalon, diencephalon, tectum, upper rhombic lip, retina and otic vesicle. Expression in the CNS decreased markedly before hatching. Pharyngeal arch primordia, arches, jaws and gills expressed pcdh18, and the molecule was also expressed in some endodermal cells in late embryos.  相似文献   

3.
4.
Hox genes are expressed in domains with clear anterior borders exhibiting 3'-->5' hierarchy in hindbrain and in the pharyngeal area commonly in vertebrate embryos. Teleost embryos form seven pharyngeal arches, the mandibular arch, hyoid arch and the gill arches 1-5. We previously reported that, in Japanese flounder (Paralichthys olivaceus) embryos, Hoxd-4 is expressed from rhombomere 7 to the spinal cord in the central nervous system and at gill arches 2-5. At present, the hierarchy of Hox genes at gill arches 3-5 of teleost fish is unclear. Here, we investigated the expression domains of Hoxb-5 in the flounder embryo by whole-mount in situ hybridization to gain insight into the Hox code at gill arches. The initial signal indicating Hoxb-5 expression was identified in the spinal cord at hatching, corresponding with the prim-5 stage of zebrafish. Then, intense signals were detected from the anterior part of the spinal cord and from the posterior part of the pharyngeal area at 36 h after hatching. By serially sectioning the hybridized embryos, it was found that signal in the pharyngeal area came from the most posterior gill arch 5. Therefore, it is speculated that Hoxb-5 functions in regional identification of gill arch 5 in this teleost.  相似文献   

5.
We have generated transgenic zebrafish that express green fluorescent protein (GFP) in glial cells driven by the zebrafish glial fibrillary acidic protein (GFAP) regulatory elements. Transgenic lines Tg(gfap:GFP) were generated from three founders; the results presented here are from the mi2001 line. GFP expression was first visible in the living embryo at the tail bud-stage, then in the developing brain by the 5-somite-stage ( approximately 12 h post-fertilization, hpf) and then spreading posteriorly along the developing spinal cord by the 12-somite stage (approximately 15 hpf). At 24 hpf GFP-expressing cells were in the retina and lens. By 72 hpf GFP expression levels were strong and localized to the glia of the brain, neural retina, spinal cord, and ventral spinal nerves, with moderate expression in the enteric nervous system and weaker levels in the olfactory sensory placode and otic capsule. GFP expression in glia co-localized with anti-GFAP antibodies, but did not co-localize with the neuronal antibodies HuC/D or calretinin in mature neurons.  相似文献   

6.
7.
8.
The human amyloid protein precursor (APP) gene correlates with early onset of Alzheimer's disease in humans. We have identified two APP homologues in zebrafish, which we call appa and appb. They show a high degree of identity to human APP particularly in the beta APP42 and the transmembrane domain. Widespread expression of both appa and appb was detected from mid-gastrulation until the bud stage. During segmentation, the two genes diverged in their pattern of expression: at 14 h post-fertilisation (hpf) and 18 hpf both genes were expressed rostrally in the prospective CNS, but only appa was found caudally in the paraxial segmental plate and presomitic mesoderm, excluding the midline. In contrast, appb was found caudally in the neural rod at 14 hpf and the developing spinal cord at 18 hpf. Later, at 24 hpf both genes shared common expression domains, namely the telencephalon, the ventral diencephalon, the trigeminal ganglia, and the posterior lateral line ganglia. Unique expression domains for appa were the lens, the otic vesicles and the somites, while appb was expressed in a serially repeated set of nuclei within the hindbrain, the ventral mesencephalon and the motoneurones of the developing spinal cord.  相似文献   

9.
Skeletal muscle plays an important role in the regulation of energy homeostasis; therefore, the ability of skeletal muscle to adapt and alter metabolic gene expression in response to changes in physiological demands is critical for energy balance. Individuals with cervical spinal cord lesions are characterized by tetraplegia, impaired thermoregulation, and altered skeletal muscle morphology. We characterized skeletal muscle metabolic gene expression patterns, as well as protein content, in these individuals to assess the impact of spinal cord injury on critical determinants of skeletal muscle metabolism. Our results demonstrate that mRNA levels and protein expression of skeletal muscle genes essential for glucose storage are reduced, whereas expression of glycolytic genes is reciprocally increased in individuals with spinal cord injury. Furthermore, expression of genes essential for lipid oxidation is coordinately reduced in spinal cord injured subjects, consistent with a marked reduction of mitochondrial proteins. Thus spinal cord injury resulted in a profound and tightly coordinated change in skeletal muscle metabolic gene expression program that is associated with the aberrant metabolic features of the tissue.  相似文献   

10.
TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid   总被引:17,自引:0,他引:17  
Both retinoic acid (RA) and Tbx1 are definitively indispensable for the development of the pharyngeal arches. The defects produced by a loss of Tbx1 highly resemble those induced by hyper- and hypo-RA. Based on these similarities, the effects of RA on Tbx1 expression pattern were explored during pharyngeal arch development in zebrafish. Whole-mount in situ hybridization and real-time quantitative PCR were used. Zebrafish embryos were treated with 5 x 10(-8)mol/L and 10(-7)mol/L RA at 12.5 hours post fertilization for 1.5 hours, respectively. Whole-mount in situ hybridization showed that Tbx1 was expressed in the cardiac region, pharyngeal arch and otic vesicle between 24 hpf and 72 hpf in zebrafish. Tbx1 expression was obviously reduced, even lost, in the pharyngeal arch and outflow tract in RA treated groups. Real-time quantitative PCR analysis showed that Tbx1 expression rose to a peak level at 36 hpf in wild type group. Repression of Tbx1 expression was most evident at 36 hpf, 24 hours after RA treatment. 10(-7 )mol/L RA caused a more severe effect on the Tbx1 expression level than 5 x 10(-8)mol/L RA.The results suggested that RA could produce an altered Tbx1 expression pattern in zebrafish. In addition, RA could repress Tbx1 expression in a dose-dependent manner.  相似文献   

11.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

12.
The monoamine serotonin (5-HT) exerts key neuromodulatory activities in all animal phyla, but the development and function of the serotonergic system is still incompletely understood. The zebrafish Danio rerio is an excellent model to approach this question since it is amenable to a combination of genetic, molecular and embryological studies. In order to characterize the organization of serotonergic neurons in the zebrafish we cloned two cDNAs encoding distinct forms of tryptophan hydroxylase (Tph), the rate-limiting enzyme in serotonin synthesis. We report here the pattern of expression of these two genes in relation with immunoreactive TH and 5-HT nuclei in the developing zebrafish embryo and early larva. tphD1 expression starts at 22 h post-fertilization (hpf) in the epiphysis and in basal spinal cells. Expression persists in the epiphysis until at least 4 days (dpf). Between 48 hpf and 3 dpf, tphD1 expression is initiated in retinal amacrine cells and in restricted preoptic and posterior tubercular nuclei within the basal diencephalon. At 3 and 4 dpf, tphD1 expression is newly initiated in the caudal hypothalamus and in branchial arches-associated neurons. tphD2 mRNA is detected transiently (between 30 somites and 32 hpf) in a restricted preoptic nucleus. All sites of tphD1 or D2 expression within the anterior central nervous system are also immunoreactive for 5-HT, but are not positive for TH. However, neither tphD gene is expressed in raphe nuclei, suggesting that additional tph gene(s) exist in zebrafish to account for 5-HT synthesis in that location. The co-expression of tphD1, tphD2 and 5-HT in the zebrafish diencephalon appears in striking contrast to the situation in mammals, where diencephalic serotonin results from re-uptake rather than from local production.  相似文献   

13.
为了解斑马鱼胚胎发育过程中FGF3基因的时空性表达情况,并探讨其对胚胎发育的调控作用,该研究分别提取2,4,8,12,24,36,48,72hpf斑马鱼胚胎的总RNA,经逆转录成cDNA,实时荧光定量PcR检测FGF3基因mRNA表达量;扩增FGF3基因特异片段,构建pGEM-T/FGF3基因片段重组质粒,经克隆及测序验证后,合成地高辛标记的反义RNA探针,以整体原位杂交法检测斑马鱼胚胎FGF3基因的空间性表达。结果显示:FGF3P基因在2hp胚胎就有表达,并持续至胚胎孵化,12hpf胚胎FGF3表达量达到高峰(P〈0.01);胚胎发育过程中心表达部位以头、尾、咽弓为主。由此得出结论,FGF3主要在胚胎发育早期表达,其表达可能与胚胎脑、眼、耳、咽弓及尾部器官的发育调控有关。  相似文献   

14.
In this study we analyzed expression patterns of two δ-protocadherins, protocadherin-9 and protocadherin-17, in the developing zebrafish using in situ hybridization and RT-PCR methods. Both protocadherins were mainly detected in the embryonic central nervous system, but each showed a distinct expression pattern. Protocadherin-9 message (Pcdh9) was expressed after 10 h post fertilization (hpf). It was found mainly in small clusters of cells in the anteroventral forebrain and ventrolateral hindbrain, and scattered cells throughout the spinal cord of young embryos (24 hpf). Pcdh9 expression in the hindbrain was segmental, reflecting a neuromeric organization, which became more evident at 34 hpf. As development proceeded, Pcdh9 expression increased throughout the brain, while its expression in the spinal cord was greatly reduced. Pcdh9 was also found in the developing retina and statoacoustic ganglion. Protocadherin-17 message (Pcdh17) expression began much earlier (1.5–2 hpf) than Pcdh9. Similar to Pcdh9 expression, Pcdh17 expression was found mainly in the anteroventral forebrain at 24 hpf, but its expression in the hindbrain and spinal cord, confined mainly to lateroventral regions of the hindbrain and anterior spinal cord, was more restricted than Pcdh9. As development proceeded, Pcdh17 expression was increased both in the brain and spinal cord: detected throughout the brain of two- and three-day old embryos, strongly expressed in the retina and in lateral regions of spinal cord in two-day old embryos. Its expression in the retina and spinal cord was reduced in three-day old embryos. Our results showed that expression of these two protocadherins was both spatially and temporally regulated.  相似文献   

15.
Desmin is a muscle-specific protein and a constitutive subunit of the intermediate filaments (IF) in skeletal, cardiac and smooth muscles. It is an early marker of skeletal muscle myogenesis. We have characterized a clone of desmin cDNA from an embryonic zebrafish (Danio rerio) cDNA library. The full-length cDNA comprised 1798 nucleotides, encoding a protein of 473 amino acids. The predicted amino acid sequence of the zebrafish desmin shares a high degree of similarity to other vertebrate desmins, but also contains a sequence at the carboxyl terminal of the tail domain that is unique to the zebrafish. It carries many features which are distinctive of IF subunit proteins. These include the T/SSYRRXF/Y motif in the head domain, and the intermediate filament signature consensus, [I/V]-X-[T/A/C/I]-Y-[R/K/H]-X-[L/M]-L-[D/E], located in the carboxyl terminus of the central helical rod. Unlike other 3' UTR sequences, the 3' UTR of the zebrafish cDNA sequence has two CAYUG elements flanking a single polyadenylation site. The temporal and spatial expression patterns of desmin mRNA during early zebrafish development were studied. The onset of desmin expression occurred at the 1-3 somite stage (11 hpf). It increased throughout somitogenesis, with maximum expression at the Prim-6 stage (25 hpf), and decreasing expression towards the protruding-mouth stage (72 hpf). Desmin mRNA was initially localised exclusively to the somites, but was subsequently also detected in other musculature in the developing heart and fins. The onset of expression and the spatial localization of desmin mRNA in the zebrafish coincides with that reported for MyoD and myogenin.  相似文献   

16.
Fgf8 signalling is known to play an important role during patterning of the first pharyngeal arch, setting up the oral region of the head and then defining the rostral and proximal domains of the arch. The mechanisms that regulate the restricted expression of Fgf8 in the ectoderm of the developing first arch, however, are not well understood. It has become apparent that pharyngeal endoderm plays an important role in regulating craniofacial morphogenesis. Endoderm ablation in the developing chick embryo results in a loss of Fgf8 expression in presumptive first pharyngeal arch ectoderm. Shh is locally expressed in pharyngeal endoderm, adjacent to the Fgf8-expressing ectoderm, and is thus a candidate signal regulating ectodermal Fgf8 expression. We show that in cultured explants of presumptive first pharyngeal arch, loss of Shh signalling results in loss of Fgf8 expression, both at early stages before formation of the first arch, and during arch formation. Moreover, following removal of the endoderm, Shh protein can replace this tissue and restore Fgf8 expression. Overexpression of Shh in the non-oral ectoderm leads to an expansion of Fgf8, affecting the rostral-caudal axis of the developing first arch, and resulting in the formation of ectopic cartilage. Shh from the pharyngeal endoderm thus regulates Fgf8 in the ectoderm and the role of the endoderm in pharyngeal arch patterning may thus be indirectly mediated by the ectoderm.  相似文献   

17.
18.
19.
Here, we report the cloning and expression analysis of two previously uncharacterized paralogs group 2 Hox genes, striped bass hoxa2a and hoxa2b, and the developmental regulatory gene egr2. We demonstrate that both Hox genes are expressed in the rhombomeres of the developing hindbrain and the pharyngeal arches albeit with different spatio-temporal distributions relative to one another. While both hoxa2a and hoxa2b share the r1/r2 anterior boundary of expression characteristic of the hoxa2 paralog genes of other species, hoxa2a gene expression extends throughout the hindbrain, whereas hoxa2b gene expression is restricted to the r2-r5 region. Egr2, which is used in this study as an early developmental marker of rhombomeres 3 and 5, is expressed in two distinct bands with a location and spacing typical for these two rhombomeres in other species. Within the pharyngeal arches, hoxa2a is expressed at higher levels in the second pharyngeal arch, while hoxa2b is more strongly expressed in the posterior arches. Further, hoxa2b expression within the arches becomes undetectable at 60hpf, while hoxa2a expression is maintained at least up until the beginning of chondrogenesis. Comparison of the striped bass HoxA cluster paralog group 2 (PG2) genes to their orthologs and trans-orthologs shows that the striped bass hoxa2a gene expression pattern is similar to the overall expression pattern described for the hoxa2 genes in the lobe-finned fish lineage and for the hoxa2b gene from zebrafish. It is notable that the pharyngeal arch expression pattern of the striped bass hoxa2a gene is more divergent from its sister paralog, hoxa2b, than from the zebrafish hoxa2b gene. Overall, our results suggest that differences in the Hox PG2 gene complement of striped bass and zebrafish affects both their rhombomeric and pharyngeal arch expression patterns and may account for the similarities in pharyngeal arch expression between striped bass hoxa2a and zebrafish hoxa2b.  相似文献   

20.
Receptor protein-tyrosine phosphatases (RPTPs) are key players in Drosophila development. To study the role of RPTPs in vertebrate development, we have cloned zebrafish (zf) RPTPs, including RPTP alpha (RPTPalpha), RPTP sigma (RPTPsigma) and LAR. These three RPTPs are broadly transcribed in early development. At 24h post fertilisation (hpf), all three genes are expressed in the nervous system in partially overlapping patterns. At 3 days post fertilisation zf-RPTPalpha and zf-LAR show similar expression patterns in the central nervous system (CNS), the pharyngeal arches, the pectoral fins and the spinal cord. Interestingly, zf-LAR is uniquely expressed in the neuromast cells, whereas zf-RPTPsigma expression is confined to the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号