首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiac hypertrophy is the heart’s response to a variety of extrinsic and intrinsic stimuli, some of which might finally lead up to a maladaptive state. An integral part of the pathogenesis of the hypertrophic cardiomyopathy disease (HCM) is the activation of the rat sarcoma (RAS)/RAF/MEK (mitogen-activated protein kinase kinase)/MAPK (mitogen-activated protein kinase) cascade. Therefore, the molecular signaling involving RAS has been the subject of intense research efforts, particularly after the identification of the RASopathies. These constitute a class of developmental disorders caused by germline mutations affecting proteins contributing to the RAS pathway. Among other phenotypic features, a subset of these syndromes is characterized by HCM, prompting researchers and clinicians to delve into the chief signaling constituents of cardiac hypertrophy. In this review, we summarize current advances in the knowledge of the molecular signaling events involved in the pathogenesis of cardiac hypertrophy through work completed on patients and on genetically manipulated animals with HCM and RASopathies. Important insights are drawn from the recognition of parallels between cardiac hypertrophy and cancer. Future research promises to further elucidate the complex molecular interactions responsible for cardiac hypertrophy, possibly pointing the way for the identification of new specific targets for the treatment of HCM.  相似文献   

2.
3.
Chronic stimulation of the renin-angiotensin system induces an elevation of blood pressure and the development of cardiac hypertrophy via the actions of its effector, angiotensin II. In cardiomyocytes, mitogen-activated protein kinases as well as protein kinase C isoforms have been shown to be important in the transduction of trophic signals. The Ca(2+)/calmodulin-dependent phosphatase calcineurin has also been suggested to play a role in cardiac growth. In the present report, we investigate possible cross-talks between calcineurin, protein kinase C, and mitogen-activated protein kinase pathways in controlling angiotensin II-induced hypertrophy. Angiotensin II-stimulated cardiomyocytes and mice with angiotensin II-dependent renovascular hypertension were treated with the calcineurin inhibitor cyclosporin A. Calcineurin, protein kinase C, and mitogen-activated protein kinase activations were determined. We show that cyclosporin A blocks angiotensin II-induced mitogen-activated protein kinase activation in cultured primary cardiomyocytes and in the heart of hypertensive mice. Cyclosporin A also inhibits specific protein kinase C isoforms. In vivo, cyclosporin A prevents the development of cardiac hypertrophy, and this effect appears to be independent of hemodynamic changes. These data suggest cross-talks between the calcineurin pathway, the protein kinase C, and the mitogen-activated protein kinase signaling cascades in transducing angiotensin II-mediated stimuli in cardiomyocytes and could provide the basis for an integrated model of cardiac hypertrophy.  相似文献   

4.
The stress-activated protein kinase, c-Jun N-terminal kinase (JNK), has been implicated in the process of cardiac hypertrophy and apoptosis, yet the specific roles of JNK in heart failure are unclear. To determine the effects of JNK activation in intact heart, we established transgenic animals using a Cre/loxP-mediated gene switch approach to achieve targeted expression of an upstream activator, mitogen-activated protein kinase kinase 7 (D) (MKK7D), in ventricular myocytes. MKK7D expression led to significant JNK activation, robust induction of the fetal gene program, and contractile dysfunction. The animals died approximately 7 weeks after birth with signs of congestive heart failure. Doppler mode echocardiography revealed a marked stiffening of JNK-activated hearts that was associated with the remodeling of specific extracellular matrix components. Gene expression analysis of MKK7D hearts revealed up-regulation of transforming growth factor beta signaling, offering a potential molecular mechanism underlying changes in extracellular matrix composition. In addition, we demonstrated that JNK activation led to specific loss of connexin 43 protein and gap junctions without affecting the expression or localization of other key intercalated disc proteins. This specific and localized gap junction remodeling resulted in significant slowing of ventricular electrical conduction in JNK-activated hearts. These results represent the first characterization of JNK-mediated cardiac pathology in vivo and support an important role for JNK signaling in specific aspects of cardiac remodeling in the pathogenesis of cardiac disease.  相似文献   

5.
Dumaz N  Marais R 《The FEBS journal》2005,272(14):3491-3504
One of the hallmarks of cAMP is its ability to inhibit proliferation in many cell types, but stimulate proliferation in others. Clearly cAMP has cell type specific effects and the outcome on proliferation is largely attributed to crosstalk from cAMP to the RAS/RAF/mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK pathway. We review the crosstalk between these two ancient and conserved pathways, describing the molecular mechanisms underlying the interactions between these pathways and discussing their possible biological importance.  相似文献   

6.
We previously reported that hypoxia caused rapid activation of RAS/mitogen-activated protein kinase (MAPK) pathway, two other stress-activated MAPK family members, stress-activated protein kinase (SAPK) and p38MAPK, and Src family tyrosine kinases, p60(c-src) and p59(c-fyn) in cultured rat cardiac myocytes. In this study, to elucidate how hypoxia affects adhesive interaction between cardiac myocytes and extracellular matrix (ECM), we investigated the molecular mechanism of the activation of focal adhesion-associated tyrosine kinases p125(FAK) and paxillin. Here, we show that hypoxia induced tyrosine phosphorylation of p125(FAK) and paxillin and that hypoxia-induced activation of p125(FAK) was accompanied by its increased association with adapter proteins Shc and GRB2, and non-receptor type tyrosine kinase p60(c-src). Furthermore, hypoxia caused subcellular translocation of p125(FAK) from perinuclear sites to the focal adhesions. These results strongly suggest that p125(FAK) is one of the most important components in hypoxia-induced intracellular signaling in cardiac myocytes and may play a pivotal role in adhesive interaction between cardiac myocytes and ECM.  相似文献   

7.
Cardiac hypertrophy is a pathophysiological response to various pathological stresses and ultimately leads to heart failure. Oxidative stress is one of the critical processes involved in hypertrophy development. Fisetin, a small molecular flavonoid, has been shown to have anti-oxidative, anti-proliferative and anti-inflammatory properties. However, the effect of fisetin on cardiac hypertrophy remains unknown. In our present study, we showed that fisetin inhibited pressure overload-induced cardiac hypertrophy, improved cardiac function in vivo and suppressed phenylephrine (PE)-induced cardiomyocyte hypertrophy in vitro. Reactive oxygen species (ROS) levels were markedly decreased by fisetin treatment in both hypertrophic hearts and cardiomyocytes. Moreover, fisetin significantly up-regulated the expression of antioxidative genes, including catalase (CAT), superoxide dismutase 1 (SOD1) and heme oxygenase 1 (HO-1). Furthermore, co-treatment with N-acetylcysteine (NAC; ROS scavenger) and fisetin did not have synergistic inhibitory effects on PE-induced cardiomyocyte hypertrophy, indicating that the anti-hypertrophic effects of fisetin are mainly associated with the blockade of oxidative stress. Finally, the pro-hypertrophic signaling pathways, mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) kinase, were found to be suppressed by fisetin after pressure overload and PE treatment. In conclusion, our study revealed that fisetin protects against cardiac hypertrophy and that oxidative stress inhibition may be one of the pivotal mechanisms involved.  相似文献   

8.
The mAKAP signalosome and cardiac myocyte hypertrophy   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
Baicalein, a flavonoid present in the root of Scutellaria baicalensis, is well known for its antibacterial, antiviral, anti‐inflammatory, antithrombotic, and antioxidant effects. Here we show that baicalein also attenuates cardiac hypertrophy. Aortic banding (AB) was performed to induce cardiac hypertrophy secondary to pressure overload in mice. Mouse chow containing 0.05% baicalein (dose: 100 mg/kg/day baicalein) was begun 1 week prior to surgery and continued for 8 weeks after surgery. Our data demonstrated that baicalein prevented cardiac hypertrophy and fibrosis induced by AB, as assessed by echocardiographic and hemodynamic parameters and by pathological and molecular analysis. The inhibitory action of baicalein on cardiac hypertrophy was mediated by effects on mitogen‐activated protein kinase kinase (MEK)‐extracellular signal‐regulated kinases (ERK1/2) signaling and GATA‐4 activation. In vitro studies performed in rat cardiac H9c2 cells confirmed that baicalein attenuated cardiomyocyte hypertrophy induced by angiotensin II, which was associated with inhibiting MEK‐ERK1/2 signaling. In conclusion, our results suggest that baicalein has protective potential for targeting cardiac hypertrophy and fibrosis through suppression of MEK‐ERK1/2 signaling. Baicalein warrants further research as a potential antihypertrophic agent that might be clinically useful to treat cardiac hypertrophy and heart failure. J. Cell. Biochem. 114: 1058–1065, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
病理性心肌肥厚是心肌细胞受到多种因素刺激后所产生的失代偿性反应,最终可演变为心力衰竭,甚至诱发猝死。鉴于其复杂的病理过程,具体发病机制至今尚未完全阐明,但既有研究已明确有丝分裂原活化蛋白激酶信号通路、Ca~(2+)介导的信号通路、蛋白激酶信号通路、Janus激酶/信号转导子和转录激活子信号通路和MicroRNAs信号通路在调控心肌肥厚的进程中起着至关重要的作用。现就相关信号通路在心肌肥厚发生、进展及预后中所起作用的最新研究进展予以综述。  相似文献   

12.
Cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein of 220 amino acids. It has been proposed that CREG acts as a ligand that enhances differentiation and/or reduces cell proliferation. CREG has been shown previously to attenuate cardiac hypertrophy in vitro . However, such a role has not been determined in vivo . In the present study, we tested the hypothesis that overexpression of CREG in the murine heart would protect against cardiac hypertrophy and fibrosis in vivo . The effects of constitutive human CREG expression on cardiac hypertrophy were investigated using both in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding and infusion of angiotensin II in CREG transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive over-expression of human CREG in the murine heart attenuated the hypertrophic response, markedly reduced inflammation. Cardiac function was also preserved in hearts with increased CREG levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase 1 (MEK-ERK1)/2-dependent signalling cascade. In addition, CREG expression blocked fibrosis and collagen synthesis through blocking MEK-ERK1/2-dependent Smad 2/3 activation in vitro and in vivo . Therefore, the expression of CREG improves cardiac functions and inhibits cardiac hypertrophy, inflammation and fibrosis through blocking MEK-ERK1/2-dependent signalling.  相似文献   

13.
Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)‐induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal‐regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II‐induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II‐induced EGFR activation is mediated by c‐Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c‐Src‐dependent EGFR activation may play an important role in Ang II‐induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II‐associated cardiac diseases.  相似文献   

14.
The role of Jak/STAT signaling in heart tissue renin-angiotensin system   总被引:4,自引:0,他引:4  
The involvement of the Renin Angiotensin System (RAS) and the role of its primary effector, angiotensin II (Ang II), in etiology of myocardial hypertrophy and ischemia is well documented. In several animal models, the RAS is activated in cardiac cell types that express the receptor AT1, and/or AT2, through which the Ang II mediated effects are promoted. In this article, we briefly review recent experimental evidence on the critical role of a prominent signaling pathway, the Jak/Stat pathway in activation and maintenance of the local RAS in cardiac hypertrophy and ischemia. Recent studies in our laboratory document that the promoter of the prohormone angiotensinogen (Ang) gene serves as the target site for STAT proteins, thereby linking the Jak/Stat pathway to activation of heart tissue autocrine Ang II loop. Stat5A and Stat6, are selectively activated when the heart is subjected to ischemic injury, whereas activation of Stat3 and Stat5A is involved in myocardial hypertrophy. Blockage of RAS activation by treatment with specific inhibitor promotes a remarkable recovery in functional hemodynamics of the myocardium. Thus, activation of selective sets of Stat proteins constitutes the primary signaling event in the pathogenesis of myocardial hypertrophy and ischemia.  相似文献   

15.
Huang AM  Rubin GM 《Genetics》2000,156(3):1219-1230
Differentiation of the R7 photoreceptor cell is dependent on the Sevenless receptor tyrosine kinase, which activates the RAS1/mitogen-activated protein kinase signaling cascade. Kinase suppressor of Ras (KSR) functions genetically downstream of RAS1 in this signal transduction cascade. Expression of dominant-negative KSR (KDN) in the developing eye blocks RAS pathway signaling, prevents R7 cell differentiation, and causes a rough eye phenotype. To identify genes that modulate RAS signaling, we screened for genes that alter RAS1/KSR signaling efficiency when misexpressed. In this screen, we recovered three known genes, Lk6, misshapen, and Akap200. We also identified seven previously undescribed genes; one encodes a novel rel domain member of the NFAT family, and six encode novel proteins. These genes may represent new components of the RAS pathway or components of other signaling pathways that can modulate signaling by RAS. We discuss the utility of gain-of-function screens in identifying new components of signaling pathways in Drosophila.  相似文献   

16.
Cardiac hypertrophy is an adaptive response to various physiological and pathological stimuli. Phosphoinositide-3 kinase (PI3K) is a highly conserved lipid kinase involved in physiological cardiac hypertrophy (PHH). PI3K interacting protein1 (Pik3ip1) shares homology with the p85 regulatory subunit of PI3K and is known to interact with the p110 catalytic subunit of PI3K, leading to attenuation of PI3K activity in liver and immune cells. However, the role of Pik3ip1 in the heart remains unknown. In the present study, the effects of Pik3ip1 on cardiac hypertrophy were examined. We found that the expression level of Pik3ip1 was markedly higher in cardiomyocytes than in fibroblasts. The interaction of Pik3ip1 with the p110a subunit of PI3K in the heart was identified by immunoprecipitation using neonatal rat cardiomyocytes (NRCM). Approximately 35% knockdown of Pik3ip1 was sufficient to induce myocardial hypertrophy. Pik3ip1 deficiency was shown to lead to activation of PI3K/protein kinase B (AKT)/ mammalian target of rapamycin (mTOR) signaling pathway, increasing protein synthesis and cell size. However, adenovirus-mediated overexpression of Pik3ip1 attenuated PI3K-mediated cardiac hypertrophy. Pik3ip1 was upregulated by PHH due to swimming training, but not by pathological cardiac hypertrophy (PAH) due to pressure-overload, suggesting that Pik3ip1 plays a compensatory negative role for PHH. Collectively, our results elucidate the mechanisms for the roles of Pik3ip1 in PI3K/AKT signaling pathway.  相似文献   

17.
The BRAF gene encodes for a serine/threonine protein kinase that participates in the MAPK/ERK signalling pathway and plays a vital role in cancers and developmental syndromes (RASopathies). The current review discusses the clinical significance of the BRAF gene and other members of RAS/RAF cascade in human cancers and RAS/MAPK syndromes, and focuses the molecular basis and clinical genetics of BRAF to better understand its parallel involvement in both tumourigenesis and RAS/MAPK syndromes—Noonan syndrome, cardio-facio-cutaneous syndrome and LEOPARD syndrome.  相似文献   

18.
Foci of chondrocyte hypertrophy that commonly develop in osteoarthritic (OA) cartilage can promote dysregulated matrix repair and pathologic calcification in OA. The closely related chemokines IL-8/CXCL8 and growth-related oncogene alpha (GROalpha)/CXCL1 and their receptors are up-regulated in OA cartilage chondrocytes. Because these chemokines regulate leukocyte activation through p38 mitogen-activated protein kinase signaling, a pathway implicated in chondrocyte hypertrophic differentiation, we tested whether IL-8 and GROalpha promote chondrocyte hypertrophy. We observed that normal human and bovine primary articular chondrocytes expressed both IL-8Rs (CXCR1, CXCR2). IL-8 and the selective CXCR2 ligand GROalpha (10 ng/ml) induced tissue inhibitor of metalloproteinase-3 expression, markers of hypertrophy (type X collagen and MMP-13 expression, alkaline phosphatase activity), as well as matrix calcification. IL-8 and the selective CXCR2 ligand GROalpha also induced increased transamidation activity of chondrocyte transglutaminases (TGs), enzymes up-regulated in chondrocyte hypertrophy that have the potential to modulate differentiation and calcification. Under these conditions, p38 mitogen-activated protein kinase pathway signaling mediated induction of both type X collagen and TG activity. Studies using mouse knee chondrocytes lacking one of the two known articular chondrocyte-expressed TG isoenzymes (TG2) demonstrated that TG2 was essential for murine GROalpha homologue KC-induced TG activity and critically mediated induction by KC of type X collagen, matrix metalloproteinase-13, alkaline phosphatase, and calcification. In conclusion, IL-8 and GROalpha induce articular chondrocyte hypertrophy and calcification through p38 and TG2. Our results suggest a novel linkage between inflammation and altered differentiation of articular chondrocytes. Furthermore, CXCR2 and TG2 may be sites for intervention in the pathogenesis of OA.  相似文献   

19.
20.
Fu MG  Wang XH  Jiang ZS  Pang YZ  Liu NK  Tang CS 《生理学报》1999,51(5):597-601
本研究观察了钙调神经磷酸酶依赖的信号通路在血管紧张素Ⅱ诱导的大鼠心肌细胞肥大中的作用。在AngⅡ刺激的大鼠心肌细胞肥大模型上,应用环孢素A(CsA)阻断CaN通路,观察心肌细胞^3H-亮氨酸掺入,CaN,MAPK及PKC活性的变化。结果表明,AngⅡ(10^-7mol/L)刺激大鼠心肌细胞^3H-亮氨酸掺入较对照组增高46%(P〈0.01),CsA(0.5-5μg/ml)可以浓度依赖性方式抑制An  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号