首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PHYCOLOGY AND HEAVY-METAL POLLUTION   总被引:9,自引:0,他引:9  
1. All heavy metals, including those that are essential micronutrients (e.g. copper, zinc, etc.), are toxic to algae at high concentrations. 2. One characteristic feature of heavy-metal toxicity is the poisoning and inactivation of enzyme systems. Many of the physiological and biochemical processes, viz., photosynthesis, respiration, protein synthesis and chlorophyll synthesis, etc., are severely affected at high metal concentrations. 3. Some algae inhabit waters chronically polluted with heavy-metal-laden wastes from mining and smelting operations; Nodularia sp., Oscillatoria sp., Cladophora sp., Hormidium sp., Fucus sp. and Laminaria sp., etc., occur in metal-rich waters. These algal forms are probably more capable of combating the toxic levels of heavy metals and this attribute is a result of physiological and/or genetic adaptations. The sensitivity or tolerance to heavy metals varies amongst different algae. The phenomena of multiple tolerance and co-tolerance may be exhibited by some algae. 4. Heavy-metal pollution causes reduction in species diversity leading to the dominance of a few tolerant algal forms. The primary productivity also decreases after metal supplementation. 5. The uptake and accumulation of heavy metals can be active (energy-dependent), passive (energy-independent), or both. 6. Heavy metals can be safely stored as intranuclear complexes by some algae. Notwithstanding this, some changes in the cell wall can enable the algae to tolerate heavy metals by checking the entry of the metals (exclusion mechanism). 7. The metal content of algae growing in a waterbody may yield valuable information for simulating heavy metal pollution: several species of Cladophora and Fucus have been extensively used for this purpose. 8. Several factors affect and determine toxicity of heavy metals to algae. At low pH, the availability of heavy metals to algae is greatly increased, as a consequence of which pronounced toxicity is evident. Hard waters decrease metal toxicity. Some ions, e.g., calcium, magnesium and phosphorus, can alleviate toxicity of metals. 9. The presence of other metals can influence toxicity of a heavy metal through simple additive effect or by synergistic and antagonistic interactions. Similarly, other pollutants can influence heavy-metal toxicity. 10. The toxicity of heavy metals depends upon their chemical speciation. Various ionic forms of a metal characterized by different valency states, may be differentially toxic to a test alga. 11. Amino acids, organic matter, humic acids, fulvic acid, EDTA, NTA, etc. can complex with heavy metals and render them unavailable. This may eventually lead to less toxicity. 12. Heavy-metal toxicity largely depends upon algal population density: the denser the population the more numerous the cellular sites available, leading to decreased toxicity.  相似文献   

2.
The adverse effects of copper and zinc on an acetate-utilizing mixed cultures of sulfate-reducing bacteria (SRB) at concentrations below the toxic concentration (minimum metal concentration at which no sulfate reduction is observed) are reported in this paper. Mathematical models were developed to incorporate the toxic and inhibitory effects (defined as the reduction in bacterial population upon exposure to the metal and the decrease in the metabolic rate of sulfate reduction by the SRB, respectively) into the sulfate-reduction biokinetics. The characteristic toxicity and inhibition constants were obtained from the measurements of bacterial populations and dissolved metal concentrations in serum bottle studies conducted at 35 degrees C and pH 6.6. Both copper and zinc had toxic and inhibitory effects on SRB. The toxicity constants for copper and zinc were 10.6 and 2.9 mM(-1), respectively, indicating that exposure to copper resulted in a higher mortality of SRB than did exposure to zinc. The values of the inhibition constants were found to be 17.9 +/- 2.5 and 25.2 +/- 1.0 mM(-1) for copper and zinc, respectively. This implies that dissolved zinc was slightly more inhibitory to SRB than copper. The models presented in the paper can be used to predict the response of a sulfate-reduction bioreactor to heavy metals during acid mine drainage treatment.  相似文献   

3.
The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.  相似文献   

4.
The genome sequences of Rhodopirellula baltica, formerly Pirellula sp. strain 1, Blastopirellula marina, Gemmata obscuriglobus, and Kuenenia stuttgartiensis were used in a series of pairwise reciprocal best-hit analyses to evaluate the contested evolutionary position of Planctomycetes. Contrary to previous reports which suggested that R. baltica had a high percentage of genes with closest matches to Archaea and Eukarya, we show here that these Planctomycetes do not share an unusually large number of genes with the Archaea or Eukarya, compared with other Bacteria. Thus, best-hit analyses may assign phylogenetic affinities incorrectly if close relatives are absent from the sequence database.  相似文献   

5.
Accumulative phases for heavy metals in limnic sediments   总被引:3,自引:1,他引:2  
Förstner  Ulrich 《Hydrobiologia》1982,91(1):269-284
Data from mechanical concentrates of recent sediments indicate that clay minerals, clay-rich aggregates and heavy minerals are the major carriers of heavy metals in detrital sediment fractions. Hydrous Fe/Mn oxides and carbonates and sulfides, in their specific environments, are the predominant accumulative phases for heavy metals in autochthonous fractions. Sequential chemical extraction techniques permit the estimation of characteristic heavy metal bonding forms: exchangeable metal cations, easily reducible, moderately reducible, organic and residual metal fractions, whereby both diagenetic processes and the potential availability of toxic compounds can be studied. The data from lakes affected by acid precipitation indicate that zinc, cobalt and nickel are mainly released from the easily reducible sediment fractions and cadmium from organic phases. In contrast at pH 4.4, neither lead nor copper seem to be remobilized to any significant extent. Immobilization by carbonate precipitation seems to provide an effective mechanism for the reduction of dissolved inputs 9f metals such as zinc and cadmium in pH-buffered, hard water systems.  相似文献   

6.
Differences in the degree of separate and combined effects of temperature, pH, and heavy metals (zinc, copper) on the trypsin- and chymotrypsin-like proteinase activities have been established in the whole body of some invertebrate animals - potential objects of fish nutrition: pond snail Lymnaeae stagnalis, orb snail Planorbis purpura, zebra mussel Dreissena polymorpha, oligochaetae Tubifex sp. and Lumbriculus sp. in total, chironomid larvae Chironimus sp. and Ch. riparus, as well as crustacean zooplankton. It has been shown that enzymes of the potential victim at a low temperature can compensate low activity of intestinal proteinases of fish bentho- and planktophages.  相似文献   

7.
Increasing the pH from 5 to 9 decreased the toxicity of mercuric chloride, zinc sulfate, lead nitrate, copper sulfate and nickel chloride toward the growth ofAspergillus flavus, Penicillium chrysogenum, Cunninghamella echinulata, Myrothecium verrucaria andPhoma humicola. On the other hand, the toxicity of cadmium chloride was increased by the increasing pH. Also increasing the concentration of organic matter (peptone and yeast extract) from 0.5 to 1.5% induced a significant reduction in the toxicity of all heavy metals toward the growth of all test fungi.  相似文献   

8.
【背景】大肠杆菌拓扑异构酶Ⅰ(Escherichia coli topoisomerase I,E.coli TopA)在DNA复制、转录、重组和基因表达调控等过程发挥关键作用。研究表明E.coli TopA只有结合锌离子才具有活性,然而E.coli TopA能否结合其他金属离子尤其是重金属离子,以及结合其他金属后是否具有活性,目前仍不清楚。【目的】探究大肠杆菌拓扑异构酶Ⅰ是否结合环境中常见重金属离子,研究重金属离子结合E.coli TopA蛋白后对其活性的影响。【方法】在分别添加有锌、钴、镍、镉、铁、汞、砷、铬、铅、铜离子的M9基础培养中表达、纯化出E.coli TopA蛋白,并对纯化得到的蛋白用电感耦合等离子体质谱仪进行相应金属离子含量的测定;利用表达E.coli TopA锌指结构的突变体蛋白鉴定重金属离子的结合位点;通过体外超螺旋DNA松弛实验测定不同金属结合E.coli TopA的拓扑异构酶活性;通过测定蛋白内源性荧光推测不同金属结合E.coli TopA的空间构象差异。【结果】E.coli TopA在体内除了能结合锌和铁之外,还能够结合钴、镍、镉3种离子,但是不能结合汞、砷、铬、铅、铜离子。钴、镍、镉结合形式的E.coli TopA,每个蛋白分子最多可以结合3个相应的金属离子,他们与TopA蛋白的结合位点也是位于3个锌指结构域,而且每个锌指结构域结合1个金属离子。此外,E.coli TopA结合钴、镍、镉离子后,其DNA拓扑异构酶活性并未受到影响,可能是由于钴、镍、镉离子结合形式的E.coli TopA蛋白,其空间构象与锌结合形式相比并未发生显著变化。【结论】由于DNA拓扑异构酶在维持细胞正常生理功能中发挥关键作用,研究表明E.coli TopA的功能不会受到常见重金属的干扰(不结合或者结合后活性无影响),这也有可能是大肠杆菌在进化过程中产生的对抗环境中重金属离子毒害作用的一种自我保护和耐受机制,具有重要的生理意义。  相似文献   

9.
Under denitrifying conditions, Pseudomonas sp. strain KC transforms carbon tetrachloride (CT) to carbon dioxide via a complex but as yet undetermined mechanism. Transformation rates were first order with respect to CT concentration over the CT concentration range examined (0 to 100 micrograms/liter) and proportional to protein concentration, giving pseudo-second-order kinetics overall. Addition of ferric iron (1 to 20 microM) to an actively transforming culture inhibited CT transformation, and the degree of inhibition increased with increasing iron concentration. By removing iron from the trace metals solution or by removing iron-containing precipitate from the growth medium, higher second-order rate coefficients were obtained. Copper also plays a role in CT transformation. Copper was toxic at neutral pH. By adjusting the medium pH to 8.2, soluble iron and copper levels decreased as a precipitate formed, and CT transformation rates increased. However, cultures grown at high pH without any added trace copper (1 microM) exhibited slower growth rates and greatly reduced rates of CT transformation, indicating that copper is required for CT transformation. The use of pH adjustment to decrease iron solubility, to avoid copper toxicity, and to provide a selective advantage for strain KC was evaluated by using soil slurries and groundwater containing high levels of iron. In samples adjusted to pH 8.2 and inoculated with strain KC, CT disappeared rapidly in the absence or presence of acetate or nitrate supplements. CT did not disappear in pH-adjusted controls that were not inoculated with strain KC.  相似文献   

10.
The decreasing order of toxicity of select heavy metals on the yeast Saccharomyces cerevisiae, in 10 mM MES (2-(N-morpholino)ethanesulfonic acid) pH buffer at pH 6.0, was found to be copper, lead, and nickel. Heavy metal (200 microM) induced a decrease in the number of viable cells by about 50% in the first 5 min for copper and in 4 h for lead, while nickel was not toxic up to a 200 microM concentration over a period of 48 h. Glucose (25 mM) strongly enhanced the toxic effect of 50 microM copper but had little or no effect on the toxicity of 200 microM lead or nickel. Copper, lead, and nickel induced the leakage of UV260-absorbing compounds from cells with different kinetics. The addition of 0.5 mM calcium, before addition of 200 microM copper, showed a protective action against cell death and decreased the release of UV-absorbing compounds, while no effect was observed against lead or nickel toxic effects. Copper complexation capacities of the filtrates of cells exposed for 2 h in 200 microM copper and 24 h in 200 microM lead were 51 and 14 microM, respectively. The implication of the complexation shown by these soluble compounds in the bioavailability of heavy metals is discussed.  相似文献   

11.
A total of 228 bacteria with an ability to resist toxic heavy metals were isolated from 8 selected sites of the Lagos Lagoon. The bacteria isolated wereStaphylocaccus sp.,Bacillus sp.,Pseudomonas sp.,Streptococcus sp.,Moraxella sp.,Escherichia coli, Proteus sp.,Klebsiella sp. andSalmonella sp. The heavy metals to which resistance was recorded were mercury, lead, zinc, cobalt, copper and chromium. The lagoon sites from which the highest number of resistant bacteria were isolated were Marina and Ebute-Ero. The heavy metal to which most bacteria were resistant was cobalt, while the least was chromium. The significance of the result is discussed in relation to the Nigerian environment and human health.  相似文献   

12.
The toxicity and inhibitory effects of heavy metals such as cadmium, nickel and zinc on alkylbenzene removal were evaluated with a Bacillus strain. The kinetics of alkylbenzene biodegradation with the different heavy metals at various concentrations were modeled using the Andrews equation which yielded a good fit between model and experimental data. Additional experiments undertaken with a Pseudomonas sp. in presence of nickel confirmed a good fit between experimental data and the Andrews model for this strain as well. The heavy metals inhibition constants (Ki) were calculated for different combinations of volatile organic compounds (VOC) and heavy metals. The present approach provides a method for evaluating and quantifying the inhibition effect of heavy metals on the biodegradtion of pollutants by specific microbial strains.  相似文献   

13.
抗锌细菌Sphingomonas sp. DX-T3-03分离、鉴定及性质   总被引:1,自引:0,他引:1  
从江西德兴铜矿重金属污染土壤中筛选得到一株对重金属锌具有极强抗性的菌株,命名为DX-T3-03。对该菌株进行形态观察、生理生化试验,采用16S rRNA序列分析,鉴定该菌为鞘氨醇单胞菌属(Sphingomonas sp.)。研究其最佳生长条件及抗重金属特性。试验结果表明:该菌株的最适应生长条件为温度35°C,pH约6.7,转速150r/min;对重金属锌有极高抗性,可以达到25mmol/L及以上,并能够在多种单一及复合重金属(Cu70mg/L、Cd300mg/L、Pb400mg/L、Ni60mg/L)中生长。  相似文献   

14.
Five heavy metals detected in distillery waste were lead (1.0–8.8 μg/ml), copper (1.7–15.7 μg/ml), zinc (3.1–11.8 μg/ml), iron (36.0–43.5 μg/ml), and manganese (3.0–5.1 μg/ml). Their toxicity to biomethanogenesis in a synthetic medium containing 1% sodium acetate, propionate, or butyrate was measured by batch fermentation, after cultivating the bacterial biomass semicontinuously. Lead, copper, and zinc in decreasing order were found to be toxic to biomethanogenesis. Lead at the concentration of 10 μg/ml completely stopped methane production. Iron did not produce any notable change in the process while manganese stimulated the rate of methane production. The toxicity of lead, copper, and zinc to methanogenic bacteria and methane production was dose-dependent but the growth of acetogenic bacteria was impaired at higher concentrations (2.5–10.0 μg/ml) of lead, copper, and zinc. Manganese stimulated the growth of only methanogenic bacteria, but not that of non-methanogenic bacteria or acetic acid production. The reduction in the synthesis of acetic acid via butyrate was more in the presence of these three metals than the synthesis of this acid via propionate.  相似文献   

15.
In a semicontinuous fermentation system, biomethanation of diluted spent wash (DW, initial COD 25–27 g/l) resulted in only 0.2 l/l of methane production in 20 d. Two capsular Gram-negative strains of bacteria were used for adsorption of heavy metals such as lead, copper, and zinc from spent wash. Strain I removed 64 % of the lead in 1 h and 82% of the copper in 2 h, while strain II removed 76% of the zinc in 2 h. The diluted spent wash from which heavy metals were removed was supplemented with synthetic medium and an acidophilic strain of Candida sp. This treatment improved methanogenesis. In 12 d, 4.9 l/l of biogas containing 63% methane was produced.  相似文献   

16.
Planctomycetes are bacteria with particular characteristics such as internal membrane systems encompassing intracellular compartments, proteinaceous cell walls, cell division by yeast-like budding and large genomes. These bacteria inhabit a wide range of habitats, including marine ecosystems, in which ultra-violet radiation has a potential harmful impact in living organisms. To evaluate the effect of ultra-violet C on the genome of several marine strains of Planctomycetes, we developed an easy and fast DNA diffusion assay in which the cell wall was degraded with papain, the wall-free cells were embedded in an agarose microgel and lysed. The presence of double strand breaks and unwinding by single strand breaks allow DNA diffusion, which is visible as a halo upon DNA staining. The number of cells presenting DNA diffusion correlated with the dose of ultra-violet C or hydrogen peroxide. From DNA damage and viability experiments, we found evidence indicating that some strains of Planctomycetes are significantly resistant to ultra-violet C radiation, showing lower sensitivity than the known resistant Arthrobacter sp. The more resistant strains were those phylogenetically closer to Rhodopirellula baltica, suggesting that these species are adapted to habitats under the influence of ultra-violet radiation. Our results provide evidence indicating that the mechanism of resistance involves DNA damage repair and/or other DNA ultra-violet C-protective mechanism.  相似文献   

17.
The in vitro effects of cadmium, copper, lead and zinc, and various cadmium compounds (chloride, sulphate and nitrate) on common carp (Cyprinus carpio) lymphocyte viability and phagocyte activity, were evaluated. The percentage of dead lymphocytes was determined after Trypan blue staining, and phagocyte activity was measured by using the nitroblue tetrazolium (NBT) reduction test. Lead was the most toxic to lymphocytes--the maximum mortality exceeded 30%, and was significantly higher at 1 microM of lead, compared to the control. The maximum mortality caused by cadmium was below 10%, but was significantly elevated with 5 microM or more of cadmium. Zinc induced lymphocyte mortality from 10 microM, whilst no effect was observed with copper. The incubation of full blood with the three cadmium compounds (at 5mg/l of cadmium) showed that cadmium nitrate and cadmium sulphate were more toxic (over 35% and 25% mortality, respectively) than cadmium chloride (about 15% mortality). This was confirmed by the results of tests on isolated cells--1mg/l of cadmium as nitrate and sulphate increased lymphocyte mortality compared to the control and cadmium chloride. Phagocytic activity was less sensitive to heavy metals than was lymphocyte viability. It was significantly reduced following exposure to 50 microM and 100 microM cadmium, and 100 microM zinc, but no effects were observed with either lead or copper.  相似文献   

18.
Methallothioneins and their role in the metabolism and toxicity of metals.   总被引:13,自引:0,他引:13  
Recent investigations have provided considerable new information regarding the biological role of metallothioneins. The synthesis of this protein is induced in cells by certain metals. It can tightly bind with zinc, copper, cadmium, mercury or silver reducing the availability of diffusible forms of these metals within cells and therefore decreasing their toxic potential. The metallothioneins may also have an important role in regulating the normal absorption and homeostasis of zinc and copper. It is paradoxical, however, in that a protein synthesized within the cell to reduce toxicity, may, in itself, be toxic when excreted or leaked out from the cell to the extracellular space. Further studies are required to elucidate the mechanisms involved in these effects.  相似文献   

19.
Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant–endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities.  相似文献   

20.
The present study was undertaken to evaluate the concentration of selenium and selected heavy metals and their possible relationship in serum of 25 healthy lactating cows (Montbéliarde) reared in a non-polluted area, in the western part of Poland. Cadmium, lead, copper, and zinc concentrations were determined by inductively coupled plasma-atomic emission spectrometry and Se concentration was determined fluorimetrically. The content of Se, Zn, and Cu was 0.083?±?0.026, 0.629?±?0.413, and 0.152?±?0.042?μg/mL, respectively. The presence of the Cd and Pb was found in all serum samples. The mean concentration of these metals was 0.0009?±?0.0008 and 0.018?±?0.016?μg/mL, respectively. Analysis of correlations between Se and toxic metals showed a negative and significant (P?相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号