首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
国产爵床科芦莉花族植物的花粉形态   总被引:3,自引:0,他引:3  
报道了国产爵床科Acanthaceae芦莉花族Ruellieae芦莉花亚族Ruelliinae 2属7种、假杜鹃亚族Barlerinae 1属3种和马蓝亚族Strobilanthinae 16属34种植物扫描电镜下的花粉形态.芦莉花亚族的地皮消属Pararuellia和喜花草属Eranthemum的花粉均为圆球形,具3孔或3孔沟,外壁为不同的网状结构; 假杜鹃亚族的假杜鹃属Barleria的花粉为长球形,具3孔沟,外壁亦为网状结构;马蓝亚族植物(包含广义的马蓝属Strobilanthes s.l.)花粉形态多样,结构复杂.依据花粉萌发孔和外壁纹饰特征,可将马蓝亚族16属植物和上述两亚族3属植物的花粉形态归纳成3大类型: 1. 具3孔类型.其中又有(1)外壁具网状纹饰者,见于地皮消属; (2)外壁具芽胞状纹饰者,见于黄猄草属Championella; (3)外壁具刺状(棒状)纹饰者,见于南一笼鸡属Paragutzlaffia、叉花草属Diflugossa和假蓝属Pteroptychia.2. 具3孔沟及具3孔沟与假沟类型(肋条带型).其中又有(1)具3孔沟和网状纹饰者,见于喜花草属和假杜鹃属; (2)具刺状(棒状)纹饰者,见于南一笼鸡属、叉花草属和假蓝属; (3)具3孔沟与假沟,外壁纹饰具节隔、肋条带状或网状,网眼纵向排列成行,网眼内有细网纹者,见于耳叶马蓝属Perilepta、马蓝属Pteracanthus(大部分)、金足草属Goldfussia、紫云菜属Strobilanthes(部分)和合页草属Sympagis; (4)具3孔沟与假沟类型,肋条带状,但不具节隔,外壁纹饰网状,网眼不成行或不明显纵向排列,网内无细网纹者,见于尖蕊花属Aechmanthera、板蓝属Baphicacanthus、马蓝属(部分)和糯米香属Semnostachya; (5)具双脊及细网状纹饰者,见于环毛紫云菜Strobilanthes cycla.3. 具(4-)5孔沟及假沟类型(肋条带型),外壁具网状或拟网状纹饰,见于腺背蓝属Adenacanthus.另外兰嵌马蓝属Parachampionella、山一笼鸡属Gutzlaffia和肖笼鸡属Tarphochlamys的花粉有无萌发孔尚不清楚,有待进一步研究.综上所述,芦莉花族植物的花粉形态具有较高的多样性,是重要的分类性状.利用花粉形态特征能较好地区分高级分类群如亚科、族以及亚族,有时也有助于阐明类群之间的相互关系,甚至也能用于区分属、种和阐明其关系.  相似文献   

2.
Pollen morphology of seven species in two genera in the Ruelliinae, three species in one genus in the Barlerinae and 34 species in 16 genera in the Strobilanthinae (Ruellieae, Acanthaceae), were observed under SEM. Pollen grains in Ruellieae, particularly in Strobilanthinae (including Strobilanthes s.l.) exhibit great diversity and are most eurypalynous in the family. In light of the aperture types and exine ornamentation patterns, pollen grains of the genera examined fall into three major types: 1. 3-porate pollen, which includes, (1) pollen with reticulate exine ornamentation (Pararuellia); (2) pollen with gemmate exine ornamentation (Championella); (3) pollen with echinate exine ornamentation (Paragutzlaffia, Diflugossa and Pteroptychia). 2. 3-colporate pollen or 3-colporate pollen with pseudocolpi, which includes, (1) 3-colporate pollen with reticulate exine ornamentation (Eranthemum and Barleria); (2) 3-colporate pollen with pseudocolpi and ribbed or banded, and septate exine ornamentation, the lumina rounded, finely reticulate inside and arranged in longitudinal rows (Perilepta, Pteracanthus, Goldfussia, Sympagis and some species of Strobilanthes); (3) 3-colporate pollen with ribbed or banded yet not septate exine ornamentation, the lumina neither distinctly rounded and finely reticulate inside, nor conspicuously arranged in longitudinal rows (Aechmanthera, Baphicacanthus, Semnostachya and some species of Pteracanthus); and (4) 3-colporate pollen with ribbed and finely reticulate exine ornamentation but with broader bands, each band with two ridges (Strobilanthes cycla). 3. (4-)5-colporate pollen with pseudocolpi and reticulate or ornate exine ornamentation (Adenacanthus). No distinct apertures were observed in three genera, Parachampionella, Gutzlaffia and Tarphochlamys. Pollen morphological characters in the Acanthaceae can be used not only to distinguish taxa of higher ranks (subfamily, tribe and subtribe) and elucidate their relationships, but sometimes can also be used to distinguish genera and species.  相似文献   

3.
The filament curtain is a complex structure found in Acanthaceae inside the corolla. It usually divides the corolla into two compartments, enclosing the main nectar bulk behind two adjacent filament bands. Four independent floral characters are involved in the structure of the filament curtain: a fusion of the filaments, decurrent filaments along the corolla wall, a slanting border between the synstapetal and apostapetal corolla regions (i.e. stamen corolla tube and corolla tube s.s .), and geniculate lower, lateral corolla lobe traces at this border. The distribution of a filament curtain within Acanthaceae suggests an enlarged tribe Ruellieae s.l ., including Louteridieae and Trichanthereae, excluding subtribe Barleriinae, and raises a question mark as to the systematic position of the genera Calacanthus, Glossochilus, Lankesteria and Mhitfieldia . The evolutionary origin of the filament curtain is probably connected with its functions in pollination biology, which are proposed to be those of restricted nectar access, prevention of nectar evaporation, lever arm function facilitating dorsal pollen deposition, and stabilizing of posticous position of anthers and style. Four types of filament curtains are distinguished: phaulopsoid, corolla fold, reduced and strobilanthoid. Variation in the filament curtain structure appears to be related to different pollination syndromes of the flowers. Mapping of this variation on to an existing phylogeny shows an evolution from a phaulopsoid type diverging into the other three types, possibly a development responding to shifts of pollinators.  相似文献   

4.
? Premise of study: This research seeks to advance understanding of conditions allowing movement of fungal pathogens among hosts. The family Clavicipitaceae contains fungal pathogens exploiting hosts across three kingdoms of life in a pattern that features multiple interkingdom host shifts among plants, animals, and fungi. The tribe Ustilaginoideae potentially represents a third origin of plant pathogenesis, although these species remain understudied. Fungal pathogens that cause ergot are linked morphologically with Clavicipitaceae, but are not yet included in phylogenetic studies. The placement of Ustilaginoideae and ergot pathogens will allow differentiation between the host habitat and host relatedness hypotheses as mechanisms of phylogenetic diversification of Clavicipitaceae. ? Methods: A multigene data set was assembled for Clavicipitaceae to test phylogenetic placement and ancestral character-state reconstructions for Ustilaginoidea virens and U. dichromonae as well as the ergot mycoparasite Cordyceps fratricida. Microscopic morphological observations of sexual and asexual states were also performed. ? Key results: Phylogenetic placement of U. virens and U. dichromonae represents a third acquisition of the plant pathogenic lifestyle in Clavicipitaceae. Cordyceps fratricida was also placed in Clavicipitaceae and recognized as a new genus Tyrannicordyceps. Ancestral character state reconstructions indicate initially infecting hemipteran insect hosts facilitates subsequent changes to a plant pathogenic lifestyle. The ancestor of T. fratricida is inferred to have jumped from grasses to pathogens of grasses. ? Conclusions: The host habitat hypothesis best explains the dynamic evolution of host affiliations seen in Clavicipitaceae and throughout Hypocreales. Co-occurrence in the same habitat has allowed for host shifts from animals to plants, and from plants to fungi.  相似文献   

5.
We used sequence data from the intron and spacer of the trnL-trnF chloroplast region to study phylogenetic relationships among Acanthaceae. This region is more variable than other chloroplast loci that have been sequenced for members of Acanthaceae (rbcL and ndhF), is more prone to length mutations, and is less homoplasious than these genes. Our results indicate that this region is likely to be useful in addressing phylogenetic questions among but not within genera in these and related plants. In terms of phylogenetic relationships, Elytraria (representing Nelsonioideae) is more distantly related to Acanthaceae sensu stricto (s.s.) than Thunbergia and Mendoncia. These last two genera are strongly supported as sister taxa. Molecular evidence does not support monophyly of Acanthaceae s.s., although there is strong morphological evidence for this relationship. There is strong support for monophyly of four major lineages within Acanthaceae s.s.: the Acanthus, Barleria, Ruellia, and Justicia lineages as here defined. The last three of these comprise a strongly supported monophyletic group, and there is weaker evidence linking the Ruellia and Justicia lineages as closest relatives. Within the Acanthus lineage, our results confirm the existence of monophyletic lineages representing Aphelandreae and Acantheae. Lastly, within the Justicia lineage, we develop initial hypotheses regarding the definition of sublineages; some of these correspond to earlier ideas, whereas others do not. All of these hypotheses need to be tested against more data.  相似文献   

6.
Classifications of Theaceae have usually placed the endangered monotypic genus Apterosperma in tribe Schimeae (x=18), whereas recent molecular phylogenetic evidence supports its transfer to tribe Theeae (x=15). Molecular data have not resolved the phylogenetic position of Apterosperma within Theeae. We investigated the chromosome number and karyotype of Apterosperma in the context of molecular and morphological phylogenetic evidence to provide further insight into the placement of Apterosperma within Theaceae. The chromosome number and karyotype was found to be 2n = 30 = 26m + 4sm, consistent with the transfer of Apterosperma to tribe Theeae. When the chromosome data were incorporated into a data set of 46 other nonmolecular characters, Apterosperma was placed as the first-diverging lineage within the clade comprising tribe Theeae. This supports its placement based on molecular data. The low intrachromosomal asymmetry (type 1A) of Apterosperma, presumably ancestral for the family, is also consistent with this placement. Character optimization strongly supports a base chromosome number of x=15 for tribe Theeae. Because of variable and sometimes conflicting chromosome count reports of species in tribes Schimeae and Stewartieae, the base chromosome number of Theaceae could be either x=15 or 17.  相似文献   

7.
? Premise of the Study: Little research has been done at the molecular level on the tribe Fumarieae (Papaveraceae). Papaveraceae is a model plant group for studying evolutionary patterns despite the lack of a reference phylogeny for this tribe. We investigated the phylogenetic relationships within the tribe to complete the molecular data for this family in order to help understand its character evolution and biogeographic pattern. ? Methods: We used maximum-parsimony and Bayesian approaches to analyze five DNA regions for 25 species representing 10 of the 11 Fumarieae genera and five outgroups. Evolutionary pathways of four characters (habit, life span, type of fruit, and number of seeds per fruit) were inferred on the phylogeny using parsimony. The ancestral distribution areas were reconstructed using dispersal-vicariance analysis. ? Key Results: Fumarieae is monophyletic and includes three groups that agree with the morphology-based subtribes: Discocapninae, Fumariinae, and Sarcocapninae. Within subtribes, the relationships among genera were different from those obtained with morphological data. Annual life span, nonchasmophytic habit, and a several-seeded capsule were the basal character states for the tribe. The ancestor occupied a continuous area between West Eurasia and Africa. Vicariances explain the divergence between lineages Discocapninae (South Africa) and Fumariinae-Sarcocapninae (Mediterranean), and the disjunction of Fumariinae (Mediterranean-Central Asia). ? Conclusions: Molecular phylogeny confirms the subtribal classification of Fumarieae based on morphology. However it provides different results regarding the relationships among genera within each subtribe, which affects the inference of the evolutionary pathway followed by the four selected characters. The disjunct distribution of the tribe is explained by different vicariance scenarios.  相似文献   

8.
 The Chenopodiaceae genus Salsola contains a large number of species with C4 photosynthesis. Along with derivative genera they have a prominent position among the desert vegetation of Asia and Africa. About 130 species from Asia and Africa were investigated to determine the occurrence of C3 versus C4 syndrome in leaves and cotyledons, and to study specific anatomical and biochemical features of photosynthesis in both photosynthetic organs. The species studied belong to all six previously identified sections of the tribe Salsoleae based on morphological characters. Types of photosynthesis were identified using carbon 13C/12C isotope fractionation. The representatives of all systematic groups were investigated for mesophyll anatomy and biochemical subtypes by determination of enzyme activity (RUBPC, PEPC, NAD- and NADP-ME and AAT) and primary photosynthetic products. Two photosynthetic types (C3 and C4) and two biochemical subtypes (NAD- and NADP-ME) were identified in both leaves and cotyledons. Both Kranz and non-Kranz type anatomy were found in leaves and cotyledons, but cotyledons had more diversity in anatomical structure. Strong relationships between anatomical types and biochemical subtypes in leaves and cotyledons were shown. We found convincing evidence for a similar pattern of structural and biochemical features of photosynthesis in leaves and cotyledons within systematic groups, and evaluated their relevance at the evolutionary level. We identified six groups in tribe Salsoleae with respect to photosynthetic types and mesophyll structure in leaves and cotyledons. Two separate lineages of biochemical and anatomical evolution within Salsoleae were demonstrated based on studies of leaves and cotyledons. The sections Caroxylon, Malpighipila, Cardiandra and Belanthera have no C3 species and only the NAD-ME C4 subtype has been found in leaves. We suggest the C4 species in the NADP-ME lineage evolved in Coccosalsola and Salsola sections, and originated in the subsection Arbuscula. Coccosalsola contains many species with C3 and/or C3-C4 intermediate photosynthesis. Within these main evolutionary lineages, species of different taxonomic groups (sections and subsections) had differences in anatomical or/and biochemical features in leaves and cotyledons. We conclude that structural and biochemical changes in the photosynthetic apparatus in species of the tribe Salsoleae were a key factor in their evolution and broad distribution in extreme desert environments. Received January 25, 2001 Accepted July 17, 2001  相似文献   

9.
Phylogenetic relationships within the mite Family Phytoseiidae are little known. The presently accepted classification is based on the opinion of specialists, but not on cladistics analysis. The present paper focuses on the tribe Euseiini, containing 271 species, three subtribes and 10 genera. It aims to determine phylogenetic relationships between these taxa and test their monophyly. Molecular analysis combining six markers has been carried out for taxa we succeeded in collecting. Morphological, biogeographic and ecological data have been analysed to determine how these factors can explain the evolutionary relationships emphasized on the phylogenetic tree. Those analyses have been carried out for the taxa available for the molecular study, but also for all species of the tribe. The tribe Euseiini and the two subtribes considered are monophyletic (at least considering the available taxa), supporting the present hypothesis on Phytoseiidae classification. However, the genus Iphiseius seems to not be valid and its unique species is included in the genus Euseius. Clades that were observed within the genus Euseius do not match with recent work on species groups within this genus. It seems that some morphological features such as an insemination apparatus shape and seta length on the dorsal shield constitute some elements explaining the clusters within the genus Euseius. Biogeographic and ecological data analysis led us to hypothesize a west Gondwanian origin of the tribe Euseiini (Africa and Neotropical areas) on Rosids plants (especially of the Orders Malpiphiales and Fabales: subclass Fabidae). Further analyses are still required to (i) take into account more taxa (especially rare ones and species from the Ethiopian part), (ii) to consider more accurate morphological features through more powerful microscopic apparatus, and (iii) to associate a phylogenetic and evolutionary scenario to life traits (pollen feeders).  相似文献   

10.
Maihuenia and Pereskia, constitute Pereskioideae, the subfamily of Cactaceae with the greatest number of relictual features, but the two genera differ strongly in habit and ecological adaptations. Plants of Maihuenia occur in extremely xeric regions of Patagonia and are small cushion plants with reduced, terete leaves and soft, slightly succulent trunks. Plants of Pereskia occur only in mesic or slightly arid regions and are leafy trees with hard, woody trunks and thin, broad leaves. Maihuenias have many more anatomical adaptations to arid conditions than do pereskias: maihuenias lack sclerenchyma in their phloem and cortex (M. poeppigii also lacks xylem sclerenchyma and can contract during drought); their wood consists of vessels, axial parenchyma, and wide-band tracheids and can store water as well as minimize embolism damage; one species channelizes water flow by producing intraxylary bark; and at least some stem-based photosynthesis occurs because maihuenias have small patches of persistent stem epidermis that bears stomata and overlies a small amount of aerenchymatous chlorenchyma. Pereskias lack all these features. Although closely related, maihuenias have fewer relictual features than do pereskias, and plants of Pereskia probably are more similar to the ancestral cacti. Received 8 March 1999/ Accepted in revised form 29 May 1999  相似文献   

11.
? Premise of the study: The Condamineeae have in previous molecular studies been shown to be part of an early-divergent clade within the subfamily Ixoroideae, together with the tribes Calycophylleae, and Hippotideae, and genera of the former Cinchoneae and Rondeletieae. Generic relationships within this clade have, however, remained largely unresolved. ? Methods: In this study, the systematics of the Condamineeae was further examined by phylogenetic reconstruction of six cpDNA regions and one nrDNA region using parsimony and Bayesian Markov chain Monte Carlo inference. Morphological character evolution within the tribe was assessed by ancestral state reconstruction using likelihood optimization of characters onto Bayesian trees. ? Key results: Calycophylleae appears polyphyletic. "Hippotideae" is monophyletic but nested within the Condamineeae. The phylogenetic hypotheses presented support a resurrection of the genera Holtonia, Schizocalyx, and Semaphyllanthe. Furthermore, Bathysa is found to be polyphyletic, Tresanthera is found nested within Rustia, and the taxonomically disputed genus Dialypetalanthus is here shown to be sister to a Bothriospora-Wittmackanthus clade. Morphological ancestral state reconstructions indicate that protogyny have evolved at least two times within the tribe and that indehiscent fruits, loculicidal fruit dehiscence, and intrapetiolar stipules have evolved independently several times. The occurrence of calycophylls (leaf-like calyx lobes), poricidal anthers, and winged seeds also appear homoplastic within the tribe. ? Conclusions: A diagnosis and delimitation of the tribe Condamineeae is presented, with taxonomic proposals to synonymize Tresanthera and to transfer several species of Bathysa as well as Phitopis to a resurrected Schizocalyx.  相似文献   

12.
The kouprey is a very rare bovid species of the Indochinese peninsula, and no living specimen has been described for a long time, suggesting that it is possibly extinct. Its systematic position within the tribe Bovini remains confused since the analyses of morphological characters have led to several conflicting hypotheses. Some authors have also suggested that it could be a hybrid species produced by the crossing of the banteng with gaur, zebu, or water buffalo. Here we performed a molecular phylogeny of the tribe Bovini to determine the taxonomic status of the kouprey. DNA was extracted from the holotype specimen preserved in the MNHN collections. Phylogenetic analyses were carried out on a matrix including all the taxonomic diversity described in the tribe Bovini, and 2065 nucleotide characters, representing three different markers, i.e., the promotor of the lactoferrin and two mitochondrial genes (cytochrome b and subunit II of the cytochrome c oxidase). The results show that the kouprey belongs to the subtribe Bovina, and that three different clades can be evidenced into this group: the first includes the domestic ox, zebu, and European bison; the second incorporates the yak and American bison; and the third contains the kouprey, banteng and gaur. All hypotheses involving hybridization for the origin of the kouprey can be rejected, confirming that it is a real wild species. Molecular datings and biogeographic inferences suggest that the kouprey diverged from banteng and gaur during the Plio-Pleistocene of Asia. In addition, several molecular signatures were detected in the cytochrome b gene, permitting a molecular identification of the kouprey. We propose a conservation project based on a molecular taxonomy approach for tracking the kouprey in Indochina in order to determine whether some populations still survive in the wild.  相似文献   

13.
The tribe Iphigenieae (Colchicaceace, Liliales) includes two genera, viz. Camptorrhiza and Iphigenia, which are distributed in Africa, India, and Australasia. Iphigeniais represented by 12 species, of which six occur in India while Camptorrhiza comprises one species each in Africa (C. strumosa) and India (C. indica). The genusCamptorrhiza possesses a knee-shaped tuber attached to the corms, filaments with a thick bulge in the middle and styles with single stigma. Iphigenia on the other hand lacks knee-shaped tuber, bears linear filaments and has styles with three stigmas. Camptorrhiza indica possesses ovoid corms, linear filaments and styles with a single stigma. These characters are intermediate between Iphigenia and Camptorrhiza and hence we studied the cytogenetics and phylogenetic placement of this species to ascertain its generic identity. Somatic chromosome count (2n = 22) and karyotypic features of C. indica are very similar to that of Iphigenia species. Molecular phylogenetic studies based on atpB-rbcL, rps16, trnL, and trnL-F regions showed that C. indica is nested within a lineage of Indian Iphigenia species. Thus, C. indica was reduced to a species of Iphigenia, i.e., I. ratnagirica. Camptorrhiza is now a monotypic genus restricted only to southern Africa. A key to the IndianIphigenia species is provided. In addition, a new combination Wurmbea novae-zelandiae is proposed for Iphigenia novae-zelandiae.  相似文献   

14.
Abstract.  Molecular phylogenetic methods were used to examine morphologically based hypotheses concerning the taxonomic structure and relationships of the grasshopper subfamily Gomphocerinae. Two mitochondrial gene (cytochrome b and cytochrome oxidase subunit I) sequences were determined for twenty-five species representing eleven Palaearctic genera. The studied Gomphocerinae species constituted a monophyletic group; furthermore, the earlier division of Gomphocerinae into tribes was supported, with each tribe monophyletic. There was no support for various systems uniting Stenobothrini and Gomphocerini into one tribe. Two separate clusters were discerned in Gomphocerini and two tribes were distinguished – Gomphocerini (genera Aeropus , Stauroderus , Chorthippus ) and Stenobothrini (genera Omocestus , Stenobothrus ).  相似文献   

15.
Data on ecology of 90 species of dermestid beetles from all the known subfamilies, tribes and most of genera in the Palaearctic fauna were obtained and summarized. The ecological groups of species were distinguished, and their hierarchical classification was elaborated. Comparison of this classification with the taxonomic classification of the family Dermestidae has shown the coincidence of the two systems down to the tribe level. The ecological groups of lower ranks correspond to genera, subgenera, or groups of closely related species. Thus, members of each taxon occupy a certain adaptive zone. The ecological groups of the same classification level are characterized by a particular type of adaptations. The data obtained were used for development of hypotheses on the origin and evolutionary trends of the basal dermestid lineages. These data may also be used for improvement of the classification of the family and solution of some taxonomic problems.  相似文献   

16.
Molecular data can aid in the resolution of conflicting hypotheses generated through difficulties in the interpretation of morphological data and/or an incomplete fossil record. Moreover, the reconstruction of phylogenetic relationships using molecular data may help to trace back the origin of morphological innovations which had a major impact on the radiation of a taxonomical group. In this work, different nuclear (18S, 28S, and H3) and mitochondrial (16S and COI) gene regions were sequenced in a total of 35 Achelatan species to test conflicting hypotheses of evolutionary relationships within the Achelata infraorder and solve the taxonomic disagreements in the group. The combined molecular dataset strongly supports the hypothesis that Achelata is a monophyletic group composed of two main families: Palinuridae and Scyllaridae. Synaxidae is found to be a polyphyletic group, which should be included within Palinuridae. Consequently, our results indicate that the origin of the stridulating organ occurred only once during Achelata evolution. Finally, the two main clades found within the Scyllaridae are in agreement with previous inferences based on adult morphological data. The dating of divergence of Achelata obtained with a relaxed-clock model is compatible with previous hypotheses of a Triassic origin of the Achelata.  相似文献   

17.
? Premise of the study: The mint family (Lamiaceae) is the sixth largest family of flowering plants, with the tribe Mentheae containing about a third of the species. We present a detailed perspective on the evolution of the tribe Mentheae based on a phylogenetic analysis of cpDNA and nrDNA that is the most comprehensive to date, a biogeographic set of analyses using a fossil-calibrated chronogram, and an examination of staminal evolution. ? Methods: Data from four cpDNA and two nrDNA markers representing all extant genera within the tribe Mentheae were analyzed using the programs BEAST, Lagrange, S-DIVA, and BayesTraits. BEAST was used to simultaneously estimate phylogeny and divergence times, Lagrange and S-DIVA were used for biogeographical reconstruction, and BayesTraits was used to infer staminal evolution within the tribe. ? Key results: Currently accepted subtribal delimitations are shown to be invalid and are updated. The Mentheae and all five of its subtribes have a Mediterranean origin and have dispersed to the New World multiple times. The vast majority of New World species of subtribe Menthinae are the product of a single dispersal event in the mid-late Miocene. At least four transitions from four stamens to two stamens have occurred within Mentheae, once in the subtribe Salviinae, once in the subtribe Lycopinae, and at least twice in the subtribe Menthinae. ? Conclusions: Worldwide cooling trends probably played a large role in the diversification and present day distribution of the tribe Mentheae. Additional work is needed to ascertain relationships within some Mentheae genera, especially in the subtribe Menthinae.  相似文献   

18.
The mylabrine genus Pseudabris is endemic to the Tibetan Plateau and includes seven species with overlapping or disjunct ranges. The genus is revised: three new species, P. brevipilosa sp.n., P. latimaculata sp.n., P. regularis sp.n., are described and illustrated, and a key to the species is provided. Molecular evidence supports the placement of Pseudabris within the tribe Mylabrini. Results of a morphology‐based cladistic analysis support the existence of two lineages, one centred mainly on the south central plateau, and the second in the eastern area. Faunistics and bionomics of the genus are summarized, focusing on phenology, elevation, habitat preference and host plants. The endemism of the Tibetan Plateau is discussed, with a special focus on the genus Pseudabris.  相似文献   

19.
The statistical testing of alternative phylogenetic trees is central to evaluating competing evolutionary hypotheses. Fleming proposed that the New Zealand cicada species Maoricicada iolanthe is the sister species to the major radiation of both low-altitude and montane Maoricicada species. However, using 1,520 bp of mitochondrial DNA sequence data from the cytochrome oxidase subunit I, tRNA aspartic acid, and the ATPase subunit 6 and 8 genes, we inferred that both M. iolanthe and another low-altitude species, Maoricicada campbelli, are nested within the montane Maoricicada radiation. Therefore, we examined the stability of the inferred phylogenetic placement of these two species using the newly developed Shimodaira-Hasegawa test (SH test) implemented in a maximum-likelihood framework. The SH test has two advantages over the more commonly used Kishino-Hasegawa (KH) and Templeton tests. First, the SH test simultaneously compares multiple topologies and corrects the corresponding P: values to accommodate the multiplicity of testing. Second, the SH test is correct when applied to a posteriori hypotheses, unlike the KH test, because it readjusts the expectation of the null hypothesis (that two trees are not different) accordingly. The comparison of P: values estimated under the assumptions of both the KH test and the SH test clearly demonstrate that the KH test has the potential to be misleading when the issue of comparing of a posteriori hypotheses is ignored and when multiple comparisons are not taken into account. The SH test, in combination with a variety of character-weighting schemes applied to our data, reveals a surprising amount of ambiguity in the phylogenetic placement of M. iolanthe and M. campbelli.  相似文献   

20.
Recent ecological research has revealed that the Sonoran Desert columnar cactus Lophocereus and the pyralid moth Upiga virescens form an obligate pollination mutualism, a rare but important case of coevolution. To investigate the phylogenetic origins of this unusual pollination system, we used molecular sequence data to reconstruct the phylogeny of the four taxa within the genus Lophocereus and to determine the phylogenetic position of Lophocereus within the North American columnar cacti (tribe Pachycereeae). Our analysis included Lophocereus, six Pachycereus species, Carnegiea gigantea, and Neobuxbaumia tetetzo within the subtribe Pachycereinae, and Stenocereus thurberi as an outgroup within the Stenocereinae. Extensive screening of chloroplast and mitochondrial genomes failed to reveal sequence variation within Lophocereus. At a deeper phylogenetic level, however, we found strong support for the placement of Lophocereus within Pachycereus as sister group to the hummingbird-pollinated P. marginatus. We discuss possible hypotheses that may explain the transition from bat pollination (ancestral) to moth and hummingbird pollination in Lophocereus and P. marginatus, respectively. Additional phylogenetic analyses suggest that the genus Pachycereus should be expanded to include Lophocereus, Carnegiea, Neobuxbaumia, and perhaps other species, whereas P. hollianus may need to be excluded from this clade. Future study will be needed to test taxonomic distinctions within Lophocereus, to test for parallel cladogenesis between phylogroups within Lophocereus and Upiga, and to fully delineate the genus Pachycereus and relationships among genera in the Pachycereinae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号