首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Stable-isotope labeling with amino acids in nematodes   总被引:2,自引:0,他引:2  
We describe an approach for accurate quantitation of global protein dynamics in Caenorhabditis elegans. We adapted stable-isotope labeling with amino acids in cell culture (SILAC) for nematodes by feeding worms a heavy lysine- and heavy arginine-labeled Escherichia coli strain and report a genetic solution to elminate the problem of arginine-to-proline conversion. Combining our approach with quantitative proteomics methods, we characterized the heat-shock response in worms.  相似文献   

2.
Quantitative proteomics has increasingly gained impact in life science research as a tool to describe changes in protein expression between different cellular states. Stable isotope labeling by amino acids in cell culture (SILAC) is a powerful technique for relative quantification of proteins. However, the accuracy of quantification is impaired by the metabolic conversion of arginine to proline resulting in additional heavy labeled proline peptide satellites. Here we reinvestigated the addition of unlabeled proline during cell cultivation under SILAC conditions considering several thousand peptides and demonstrated that the arginine-to-proline conversion is prevented independent of the cell line used.  相似文献   

3.
Stable isotope labeling with amino acids in cell culture (SILAC) is a simple in vivo labeling strategy for mass spectrometry-based quantitative proteomics. It relies on the metabolic incorporation of nonradioactive heavy isotopic forms of amino acids into cellular proteins, which can be readily distinguished in a mass spectrometer. As the samples are mixed before processing in the SILAC methodology, the sample handling errors are also minimized. Here we present protocols for using SILAC in the following types of experiments: (i) studying inducible protein complexes, (ii) identification of Tyr kinase substrates, (iii) differential membrane proteomics and (iv) studying temporal dynamics using SILAC 5-plexing. Although the overall time is largely dependent on the rate of cell growth and various sample processing steps employed, a typical SILAC experiment from start to finish, including data analysis, should take anywhere between 20 and 25 d.  相似文献   

4.
Recent studies using stable isotope labeling with amino acids in culture (SILAC) in quantitative proteomics have made mention of the problematic conversion of isotope-coded arginine to proline in cells. The resulting converted proline peptide divides the heavy peptide ion signal causing inaccuracy when compared with the light peptide ion signal. This is of particular concern as it can effect up to half of all peptides in a proteomic experiment. Strategies to both compensate for and limit the inadvertent conversion have been demonstrated, but none have been shown to prevent it. Additionally, these methods combined with SILAC labeling in general have proven problematic in their large scale application to sensitive cell types including embryonic stem cells (ESCs) from the mouse and human. Here, we show that by providing as little as 200 mg/liter L-proline in SILAC media, the conversion of arginine to proline can be rendered completely undetectable. At the same time, there was no compromise in labeling with isotope-coded arginine, indicating there is no observable back conversion from the proline supplement. As a result, when supplemented with proline, correct interpretation of "light" and "heavy" peptide ratios could be achieved even in the worst cases of conversion. By extending these principles to ESC culture protocols and reagents we were able to routinely SILAC label both mouse and human ESCs in the absence of feeder cells and without compromising the pluripotent phenotype. This study provides the simplest protocol to prevent proline artifacts in SILAC labeling experiments with arginine. Moreover, it presents a robust, feeder cell-free, protocol for performing SILAC experiments on ESCs from both the mouse and the human.  相似文献   

5.
Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) is a widespread method for metabolic labeling of cells and tissues in quantitative proteomics; however, incomplete incorporation of the label has so far restricted its wider use in plants. Here, we argue that differential labeling by two different versions of the labeled amino acids renders SILAC fully applicable to dark-grown plant cell lines. By comparing Arabidopsis thaliana cell cultures labeled with two versions of heavy Lys (Lys-4 and Lys-8), we show that this simple modification of the SILAC protocol enables similar quantitation accuracy, precision, and reproducibility as conventional SILAC in animal cells.  相似文献   

6.
Ong SE  Mann M 《Nature protocols》2006,1(6):2650-2660
Stable isotope labeling by amino acids in cell culture (SILAC) is a simple, robust, yet powerful approach in mass spectrometry (MS)-based quantitative proteomics. SILAC labels cellular proteomes through normal metabolic processes, incorporating non-radioactive, stable isotope-containing amino acids in newly synthesized proteins. Growth medium is prepared where natural ("light") amino acids are replaced by "heavy" SILAC amino acids. Cells grown in this medium incorporate the heavy amino acids after five cell doublings and SILAC amino acids have no effect on cell morphology or growth rates. When light and heavy cell populations are mixed, they remain distinguishable by MS, and protein abundances are determined from the relative MS signal intensities. SILAC provides accurate relative quantification without any chemical derivatization or manipulation and enables development of elegant functional assays in proteomics. In this protocol, we describe how to apply SILAC and the use of nano-scale liquid chromatography coupled to electrospray ionization mass spectrometry for protein identification and quantification. This procedure can be completed in 8 days.  相似文献   

7.
In the last several years, the impact of mass spectrometry (MS)-based proteomics on cell signaling research has increased dramatically. This development has been driven both by better instrumentation and by the progression of proteomics from mainly qualitative measurements towards quantitative analyses. In this regard, Stable Isotope Labeling by Amino acids in Cell culture (SILAC) has established itself as one of the most popular and useful quantitative proteomic methodologies to study signaling networks. SILAC relies on the metabolic incorporation of non-radioactive heavy isotopes in the whole proteome of desired cell line, making all proteins from these cells easily distinguishable in the mass spectrometers from the proteins originating from control cells. The procedure does not involve any chemical derivatization steps and, importantly, allows mixing of the two cell populations for combined additional sample manipulation, thus leading to highly reliable results with minimal errors. In this chapter, we describe in detail the SILAC labeling procedure and explain how to design SILAC experiments to examine the level and duration of phosphorylation of endogenous MAP kinases and their substrates in cell culture systems.  相似文献   

8.
Mass spectrometric-based approaches in quantitative proteomics   总被引:17,自引:0,他引:17  
Classically, experiments aimed at studying changes in protein expression have always followed a small set of proteins. This focused approach was necessary since tools to efficiently analyze large numbers of proteins were simply not available. Large-scale quantitative proteomics promises to produce reams of data that previously would have taken decades to measure with classical methods. Mass spectrometry is already a well-established protein identification tool and recent methodological developments indicate that it can also be successfully applied to extract quantitative data of protein abundance. From the first reports 4 years ago, numerous schemes to take advantage of stable isotope nuclei incorporation in proteins and peptides have been developed. Here we review the benefits and pitfalls of some of the most commonly used protocols, focusing on a procedure now being used extensively in our laboratory, stable isotope labeling with amino acids in cell culture (SILAC). The basic theory, application, and data analysis of a SILAC experiment are discussed. The emerging nature of these techniques and the rapid pace of technological development make forecasting the directions of the field difficult but we speculate that SILAC will soon be a key tool of quantitative proteomics.  相似文献   

9.
We report a new quantitative proteomics approach that combines the best aspects of stable isotope labeling of amino acids in cell culture (SILAC) labeling and spectral counting. The SILAC peptide count ratio analysis (SPeCtRA, http://proteomics.mcw.edu/visualize ) method relies on MS2 spectra rather than ion chromatograms for quantitation and therefore does not require the use of high mass accuracy mass spectrometers. The inclusion of a stable isotope label allows the samples to be combined before sample preparation and analysis, thus avoiding many of the sources of variability that can plague spectral counting. To validate the SPeCtRA method, we have analyzed samples constructed with known ratios of protein abundance. Finally, we used SPeCtRA to compare endothelial cell protein abundances between high (20 mM) and low (11 mM) glucose culture conditions. Our results demonstrate that SPeCtRA is a protein quantification technique that is accurate and sensitive as well as easy to automate and apply to high‐throughput analysis of complex biological samples.  相似文献   

10.
Mass spectrometry (MS)-based proteomics is increasingly applied in a quantitative format, often based on labeling of samples with stable isotopes that are introduced chemically or metabolically. In the stable isotope labeling by amino acids in cell culture (SILAC) method, two cell populations are cultured in the presence of heavy or light amino acids (typically lysine and/or arginine), one of them is subjected to a perturbation, and then both are combined and processed together. In this study, we describe a different approach--the use of SILAC as an internal or 'spike-in' standard--wherein SILAC is only used to produce heavy labeled reference proteins or proteomes. These are added to the proteomes under investigation after cell lysis and before protein digestion. The actual experiment is therefore completely decoupled from the labeling procedure. Spike-in SILAC is very economical, robust and in principle applicable to all cell- or tissue-based proteomic analyses. Applications range from absolute quantification of single proteins to the quantification of whole proteomes. Spike-in SILAC is especially advantageous when analyzing the proteomes of whole tissues or organisms. The protocol describes the quantitative analysis of a tissue sample relative to super-SILAC spike-in, a mixture of five SILAC-labeled cell lines that accurately represents the tissue. It includes the selection and preparation of the spike-in SILAC standard, the sample preparation procedure, and analysis and evaluation of the results.  相似文献   

11.
Quantitative proteomics has traditionally been performed by two-dimensional gel electrophoresis, but recently, mass spectrometric methods based on stable isotope quantitation have shown great promise for the simultaneous and automated identification and quantitation of complex protein mixtures. Here we describe a method, termed SILAC, for stable isotope labeling by amino acids in cell culture, for the in vivo incorporation of specific amino acids into all mammalian proteins. Mammalian cell lines are grown in media lacking a standard essential amino acid but supplemented with a non-radioactive, isotopically labeled form of that amino acid, in this case deuterated leucine (Leu-d3). We find that growth of cells maintained in these media is no different from growth in normal media as evidenced by cell morphology, doubling time, and ability to differentiate. Complete incorporation of Leu-d3 occurred after five doublings in the cell lines and proteins studied. Protein populations from experimental and control samples are mixed directly after harvesting, and mass spectrometric identification is straightforward as every leucine-containing peptide incorporates either all normal leucine or all Leu-d3. We have applied this technique to the relative quantitation of changes in protein expression during the process of muscle cell differentiation. Proteins that were found to be up-regulated during this process include glyceraldehyde-3-phosphate dehydrogenase, fibronectin, and pyruvate kinase M2. SILAC is a simple, inexpensive, and accurate procedure that can be used as a quantitative proteomic approach in any cell culture system.  相似文献   

12.
细胞培养稳定同位素标记技术(SILAC)是在细胞培养过程中,利用稳定同位素标记的氨基酸结合质谱技术,对蛋白表达进行定量分析的一种新技术。它不仅可以对蛋白质进行定性分析,还可通过质谱图上一对轻-重稳定同位素峰的比例来反映对应蛋白在不同状态下的表达水平,实现对蛋白质的精确定量。SILAC结合质谱技术在定量蛋白质组学中发挥了巨大的作用,其应用范围从细胞系扩展到亚细胞器、组织与动物整体水平,具体的应用策略也在不断完善发展。我们总结评述了SILAC技术在差异表达蛋白质组、蛋白质翻译后修饰、药物蛋白质组和蛋白质相互作用等方面的应用与进展。  相似文献   

13.
Biological experiments are most often performed with immortalized cell lines because they are readily available and can be expanded without limitation. However, cell lines may differ from the in vivo situation in important aspects. Here we introduce a straightforward methodology to compare cell lines to their cognate primary cells and to derive a comparative functional phenotype. We used SILAC (stable isotope labeling by amino acids in cell culture) for quantitative, mass spectrometry-based comparison of the hepatoma cell line Hepa1-6 with primary hepatocytes. The resulting quantitative proteome of 4,063 proteins had an asymmetric distribution, with many proteins down-regulated in the cell line. Bioinformatic analysis of the quantitative proteomics phenotypes revealed that Hepa1-6 cells were deficient in mitochondria, reflecting re-arrangement of metabolic pathways, drastically up-regulate cell cycle-associated functions and largely shut down drug metabolizing enzymes characteristic for the liver. This quantitative knowledge of changes provides an important basis to adapt cell lines to more closely resemble physiological conditions.  相似文献   

14.
Conventional stable isotope labeling with amino acids in cell culture (SILAC) requires extensive metabolic labeling of proteins and therefore is difficult to apply to cells that do not divide or are unstable in SILAC culture. Using two different sets of heavy amino acids for labeling allows for straightforward SILAC quantitation using partially labeled cells because the two cell populations are always equally labeled. Here we report the application of this labeling strategy to primary cultured neurons. We demonstrated that protein quantitation was not compromised by incomplete labeling of the neuronal proteins. We used this method to study neurotrophin-3 (NT-3) signaling in primary cultured neurons. Surprisingly our results indicate TrkB signaling is a major component of the signaling network induced by NT-3 in cortical neurons. In addition, involvement of proteins such as VAMP2, Scamp1, and Scamp3 suggests that NT-3 may lead to enhanced exocytosis of synaptic vesicles.  相似文献   

15.
In quantitative proteomics stable isotope labeling has progressed from cultured cells toward the total incorporation of labeled atoms or amino acids into whole multicellular organisms. For instance, the recently introduced (13)C(6)-lysine labeled SILAC mouse allows accurate comparison of protein expression directly in tissue. In this model, only lysine, but not arginine, residues are isotope labeled, as the latter may cause complications to the quantification by in vivo conversion of arginine to proline. The sole labeling of lysines discourages the use of trypsin, as not all peptides will be quantifiable. Therefore, in the initial work Lys-C was used for digestion. Here, we demonstrate that the lysine-directed protease metalloendopeptidase Lys-N is an excellent alternative. As lysine directed peptides generally yield longer and higher charged peptides, alongside the more traditional collision induced dissociation we also implemented electron transfer dissociation in a quantitative stable isotope labeling with amino acid in cell culture workflow for the first time. The utility of these two complementary approaches is highlighted by investigating the differences in protein expression between the left and right ventricle of a mouse heart. Using Lys-N and electron transfer dissociation yielded coverage to a depth of 3749 proteins, which is similar as earlier investigations into the murine heart proteome. In addition, this strategy yields quantitative information on ~ 2000 proteins with a median coverage of four peptides per protein in a single strong cation exchange-liquid chromatography-MS experiment, revealing that the left and right ventricle proteomes are very similar qualitatively as well as quantitatively.  相似文献   

16.
17.
Functional and quantitative proteomics using SILAC   总被引:3,自引:0,他引:3  
Researchers in many biological areas now routinely characterize proteins by mass spectrometry. Among the many formats for quantitative proteomics, stable-isotope labelling by amino acids in cell culture (SILAC) has emerged as a simple and powerful one. SILAC removes false positives in protein-interaction studies, reveals large-scale kinetics of proteomes and - as a quantitative phosphoproteomics technology - directly uncovers important points in the signalling pathways that control cellular decisions.  相似文献   

18.
Quantitative analysis of protein expression is an important tool for the examination of complex biological systems. Albeit its importance, quantitative proteomics is still a challenging task because of the high dynamic range of protein amounts in the cell and the variation in the physical properties of proteins. Stable isotope labeling by amino acids in cell culture (SILAC) has been successfully used in yeast and mammalian cells to measure relative protein abundance by mass spectrometry. Here we show for the first time that proteins from Arabidopsis thaliana cell cultures can be selectively isotope-labeled in vivo by growing cells in the presence of a single stable isotope-labeled amino acid. Among the tested amino acids ([2H3]-leucine, [13C6]arginine, and [2H4]lysine), [13C6]arginine proved to be the most suitable. Incorporation of [13C6]arginine into the proteome was homogeneous and reached efficiencies of about 80%. [13C6]Arginine-labeled A. thaliana suspension cells were used to study the regulation of glutathione S-transferase expression in response to abiotic stress caused by salicylic acid and to identify proteins that bind specifically to phosphorylated 14-3-3 binding motifs on synthesized bait peptides in affinity purification experiments. In conclusion, the combination of stable isotope labeling of plant cells and mass spectrometry is a powerful technology that can be applied to study complex biological processes that involve changes in protein expression such as cellular responses to various kinds of stress or activation of cell signaling.  相似文献   

19.
Stable isotope labeling by amino acids in cell culture (SILAC) has become a versatile tool for quantitative, mass spectrometry (MS)-based proteomics. Here, we completely label mice with a diet containing either the natural or the (13)C(6)-substituted version of lysine. Mice were labeled over four generations with the heavy diet, and development, growth, and behavior were not affected. MS analysis of incorporation levels allowed for the determination of incorporation rates of proteins from blood cells and organs. The F2 generation was completely labeled in all organs tested. SILAC analysis from various organs lacking expression of beta1 integrin, beta-Parvin, or the integrin tail-binding protein Kindlin-3 confirmed their absence and disclosed a structural defect of the red blood cell membrane skeleton in Kindlin-3-deficient erythrocytes. The SILAC-mouse approach is a versatile tool by which to quantitatively compare proteomes from knockout mice and thereby determine protein functions under complex in vivo conditions.  相似文献   

20.
Copper (II) oxide (CuO) nanoparticles (NP) are widely used in industry and medicine. In our study we evaluated the response of BEAS-2B human lung cells to CuO NP, using Stable isotope labeling by amino acids in cell culture (SILAC)-based proteomics and phosphoproteomics. Pathway modeling of the protein differential expression showed that CuO NP affect proteins relevant in cellular function and maintenance, protein synthesis, cell death and survival, cell cycle and cell morphology. Some of the signaling pathways represented by BEAS-2B proteins responsive to the NP included mTOR signaling, protein ubiquitination pathway, actin cytoskeleton signaling and epithelial adherens junction signaling. Follow-up experiments showed that CuO NP altered actin cytoskeleton, protein phosphorylation and protein ubiquitination level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号