首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Fasciola spp. in Myanmar were characterized on the basis of spermatogenesis status and DNA markers of nuclear internal transcribed spacer 1 (ITS1) and mitochondrial NADH dehydrogenase subunit 1 (nad1). We collected 88 adult flukes from Yangon, Lashio, and Myitkyina. Spermatogenesis status was analyzed by the presence of sperm in the seminal vesicles, and 8 aspermic and 80 spermic flukes were detected. The flukes were identified on the basis of spermatogenesis status and ITS1 types which were analyzed by a PCR-RFLP method, and 80 spermic flukes were identified as F. gigantica. A very low detection rate of aspermic Fasciola sp. indicated that they are not established in Myanmar. In phylogenetic analyses, the 7 aspermic Fasciola sp. from Myitkyina displayed a haplotype in nad1 sequence, which was identical to that of aspermic Fasciola sp. from other Asian countries including China. Therefore, they were probably introduced from China through an infected domestic ruminant. On the other hand, 17 nad1 haplotypes detected in F. gigantica belonged to 2 clades unique to Myanmar, each with a distinct founder haplotype in a network analysis. This indicated a unique history of F. gigantica introduction into Myanmar involving ancient artificial movements of domestic ruminants.  相似文献   

2.
Eighty-one Fasciola flukes collected from 8 districts in Nepal were analyzed for their species identification on the basis of their spermatogenic status and nuclear ribosomal internal transcribed spacer 1 (ITS1) and for their phylogenetic relation with Fasciola flukes from other Asian countries on the basis of the mitochondrial NADH dehydrogenase subunit 1 (nad1) gene. Sixty-one flukes (75.3%) were aspermic Fasciola sp., and 20 flukes (24.7%) were identified as Fasciola gigantica. All of the aspermic flukes displayed the Fh/Fg type in ITS1, which was predominant in aspermic Fasciola sp. from China, and most (60 flukes) displayed the Fsp-ND1-N1 haplotype in the nad1, which had an identical nucleotide sequence to the major haplotype (Fg-C2) of the aspermic flukes from China. These results suggest that aspermic Fasciola sp. was introduced into Nepal from China. Furthermore, the results of the diversity indices, neutrality indices, and median-joining network analysis with reference haplotypes from Asian countries suggest that aspermic Fasciola sp. rapidly expanded its distribution. In contrasts, F. gigantica displayed 10 nad1 haplotypes, which showed higher population diversity indices than the haplotypes of aspermic flukes, indicating that the F. gigantica population was clearly distributed in Nepal earlier than the aspermic Fasciola population. Although the F. gigantica haplotypes from Nepal formed a star-like phylogeny consisting of a main founder haplotype (Fg-ND1-N1), together with some F. gigantica haplotypes from Myanmar and Thailand, the Nepal population differed genetically from F. gigantica populations of neighboring countries as each country had distinct founder haplotype(s).  相似文献   

3.
Fasciola spp. were collected from naturally infected cattle at a local abattoir of Khanh Hoa province, Vietnam, for morphological and genetic investigations. Microscopic examination detected no sperm cells in the seminal vesicles, suggesting a parthenogenetic reproduction of the flukes. Analyses of sequences from the first and second internal transcribed spacers (ITS1 and ITS2) of the ribosomal RNA revealed that 13 out of 16 isolates were of Fasciola gigantica type, whereas three isolates presented a hybrid sequence from F. gigantica and Fasciola hepatica. Interestingly, all the mitochondrial sequences (partial COI and NDI) were of F. gigantica type, suggesting that the maternal lineage of the hybrid form is from F. gigantica. No intra-sequence variation was detected.  相似文献   

4.
Fasciolosis is an economically important disease of livestock caused by Fasciola hepatica, Fasciola gigantica, and aspermic Fasciola flukes. The aspermic Fasciola flukes have been discriminated morphologically from the two other species by the absence of sperm in their seminal vesicles. To date, the molecular discrimination of F. hepatica and F. gigantica has relied on the nucleotide sequences of the internal transcribed spacer 1 (ITS1) region. However, ITS1 genotypes of aspermic Fasciola flukes cannot be clearly differentiated from those of F. hepatica and F. gigantica. Therefore, more precise and robust methods are required to discriminate Fasciola spp. In this study, we developed PCR restriction fragment length polymorphism and multiplex PCR methods to discriminate F. hepatica, F. gigantica, and aspermic Fasciola flukes on the basis of the nuclear protein-coding genes, phosphoenolpyruvate carboxykinase and DNA polymerase delta, which are single locus genes in most eukaryotes. All aspermic Fasciola flukes used in this study had mixed fragment pattern of F. hepatica and F. gigantica for both of these genes, suggesting that the flukes are descended through hybridization between the two species. These molecular methods will facilitate the identification of F. hepatica, F. gigantica, and aspermic Fasciola flukes, and will also prove useful in etiological studies of fasciolosis.  相似文献   

5.
Fascioliasis has a negative impact on the farming industry in both developed and developing countries, rather than a public health challenge. This study was performed to identify Fasciola sp. from different definitive hosts (buffalo, cattle, and sheep) based on the molecular parameters and spermatogenesis. Ninety-one adult flukes were collected from livers of slaughtered animals at abattoirs in different prefectures in Egypt. Microscopic examination of the analyzed flukes showed many normal spermatozoa in the seminal vesicles (spermic), suggesting that they have the ability of spermatogenesis. This study showed that no parthenogenic Fasciola species occurred in Egypt. Molecular analysis was performed utilizing genomic (ITS1 and ITS2) and mitochondrial (NDI and COI) gene markers. Whereas 16 animals proved to have infection with a single Fasciola species, 2 were infected with both F. hepatica and F. gigantica. The results indicated that sheep were prone to F. hepatica (8 out of 10 animals) more than F. gigantica infection. Sequences of ITS1 and ITS2 ribosomal region indicated that the flukes were categorized into 3 groups F. hepatica-type (47), F. gigantica-type (42) and 2 flukes possessed sequences of both types indicating an existence of different alleles at the same loci. Unique overlapping of T/C bases were detected in both ITS1 (Position 96) and ITS2 (Position 416). Based on results of mitochondrial gene markers (NDI and COI), flukes were classified into F. hepatica-type and F. gigantica-type. Extensive intra-sequence polymorphism was detected at both markers. NDI and COI sequences of Egyptian strain of F. gigantica showed pronounced diversity compared with relevant sequences at database.  相似文献   

6.
Experimental infection with Fasciola hepatica and parthenogenetic Fasciola sp. in laboratory animals have been conducted in rats and rabbits. Inoculation of less than 5 metacercariae into rat-like hamsters, Tscherskia triton, is sufficient to establish Fasciola infections. The prepatent period of F. hepatica and the parthenogenetic Fasciola sp. in T. triton was shorter than that in rats and rabbits, suggesting that T. triton is a suitable experimental model for these flukes. In contrast, F. gigantica infection in T. triton did not yield adult flukes; T. triton, is therefore, considered to be an unsuitable host for F. gigantica. The cotton rat, Sigmodon hispidus, was an unsuitable host for the parthenogenetic Fasciola sp.  相似文献   

7.
A total of 134 Egyptian liver flukes were collected from different definitive hosts (cattle, sheep, and buffaloes) to identify them via the use of PCR-RFLP and sequence analysis of the first nuclear ribosomal internal transcribed spacer (ITS1). Specimens of F. hepatica from France, as well as F. gigantica from Cameroon were included in the study for comparison. PCR products of ITS1 were subjected for digestion by RsaI restriction enzyme and visualized on agarose gel. According to RFLP pattern, Egyptian flukes were allocated into two categories. The first was identical to that of French hepatica flukes to have a pattern of 360, 100, and 60 (bp) band size, whereas the second resembled to that of Cameroonian gigantica worms to have a profile of 360, 170, and 60 bp in size. Results of RFLP analysis were confirmed by sequence analysis of representative ITS1 amplicons. No hybrid forms were detected in the present study. Taken together, this study concluded that both species of Fasciola are present in Egypt, whereas the hybrid form may be not very common.  相似文献   

8.
Fasciola spp. found in Asian countries are diversified in nature, and they should therefore be characterized by spermatogenesis, ploidy and genetic differentiation as well as morphology. The present study showed that spermic diploid and aspermic triploid forms of Fasciola occurred in Vietnam. The spermic diploid specimens were accurately identified as F. gigantica, while the aspermic triploids could not be identified on the basis of their morphology by the ratio of body length and width and DNA sequences of nuclear ribosomal ITS1 and mitochondrial NDI and COI genes. The molecular data also indicated that Vietnamese aspermic triploids might be hybrids and/or their offspring between Fasciola hepatica and F. gigantica, because they showed the ITS1-Fh/Fg haplotype, which had chimeric sequences of the two species. Furthermore, the aspermic triploids seem to have originated in countries other than Vietnam and to have rapidly spread to that country with infected animals.  相似文献   

9.
On mainland China, liver flukes of Fasciola spp. (Digenea: Fasciolidae) can cause serious acute and chronic morbidity in numerous species of mammals such as sheep, goats, cattle, and humans. The objective of the present study was to examine the taxonomic identity of Fasciola species in Yunnan province by sequences of the first and second internal transcribed spacers (ITS-1 and ITS-2) of nuclear ribosomal DNA (rDNA). The ITS rDNA was amplified from 10 samples representing Fasciola species in cattle from 2 geographical locations in Yunnan Province, by polymerase chain reaction (PCR), and the products were sequenced directly. The lengths of the ITS-1 and ITS-2 sequences were 422 and 361-362 base pairs, respectively, for all samples sequenced. Using ITS sequences, 2 Fasciola species were revealed, namely Fasciola hepatica and Fasciola gigantica. This is the first demonstration of F. gigantica in cattle in Yunnan Province, China using a molecular approach; our findings have implications for studying the population genetic characterization of the Chinese Fasciola species and for the prevention and control of Fasciola spp. in this province.  相似文献   

10.
Fasciola flukes collected from domestic buffalos and cattle in the Philippines were confirmed as Fasciola gigantica and parthenogenetic Fasciola based on DNA analyses of nuclear pepck and pold genes, and the mitochondrial ND1 gene. This study is the first to elucidate that F. gigantica and parthenogenetic Fasciola coexist in the Philippines with prevalences of 90.6% and 9.4%, respectively. The F. gigantica population showed a high genetic diversity with 25 ND1 haplotypes, suggesting that F. gigantica has existed in the Philippines for a long time. In contrast, parthenogenetic Fasciola flukes showed a single ND1 haplotype (Fsp-ND1-P1), which was identical to the founder haplotype, Fg-C2 of parthenogenetic Fasciola in China. These results indicate that parthenogenetic Fasciola in the Philippines is a recently introduced population from a neighboring continent.  相似文献   

11.
Mitochondrial DNA polymorphism was characterized in a triploid form of Fasciola found in Japan in comparison with F. hepatica, F. gigantica and Korean Fasciola worm. Seventy worms of Fasciola from Japan, three of F. hepatica from Uruguay and Australia, two of F. gigantica from Thailand and one of Fasciola from Korea were used in the study. Mitochondrial DNA polymorphism was detected by restriction fragment length polymorphism (RFLP) using eight restriction enzymes, BamH I, Bgl II, Dra I, EcoR I, EcoR V, Hind III, Mfl I and Sca I. Three different types (types 1, 2 and 3) were detected from 76 Fasciola worms used in the study. Eight of 70 Japanese worms were categorized in type 2 (F. gigantica type), and the remaining 62 were in type 3 (F. hepatica type).  相似文献   

12.
The causative agent of fasciolosis in South America is thought to be Fasciola hepatica. In this study, Fasciola flukes from Peru were analyzed to investigate their genetic structure and phylogenetic relationships with those from other countries. Fasciola flukes were collected from the three definitive host species: cattle, sheep, and pigs. They were identified as F. hepatica because mature sperms were observed in their seminal vesicles, and also they displayed Fh type, which has an identical fragment pattern to F. hepatica in the nuclear internal transcribed spacer 1. Eight haplotypes were obtained from the mitochondrial NADH dehydrogenase subunit 1 (nad1) sequences of Peruvian F. hepatica; however, no special difference in genetic structure was observed between the three host species. Its extremely low genetic diversity suggests that the Peruvian population was introduced from other regions. Nad1 haplotypes identical to those of Peruvian F. hepatica were detected in China, Uruguay, Italy, Iran, and Australia. Our results indicate that F. hepatica rapidly expanded its range due to human migration. Future studies are required to elucidate dispersal route of F. hepatica from Europe, its probable origin, to other areas, including Peru.  相似文献   

13.
Nucleotide sequences of two regions, cytochrome c-oxidase subunit 1 (CO1) and NADH dehydrogenase subunit 1 (ND1) of the mitochondrial DNA and two regions, internal-transcribed spacer 2 (ITS2) and the D2 region in the 28S rDNA (28S) of the nuclear DNA were obtained from five Korean worms of the genus Fasciola in order to elucidate their taxonomic status. The CO1 and ND1 regions are all monomorphic in the Korean worms and similar to those of F. gigantica. On the other hand, the ITS2 and D2 regions were found to be polymorphic; that is, out of five worms, two possessed a F. gigantica-type sequence, one, a F. hepatica-type sequence and two possessed sequences of both types indicating an existence of different alleles at the loci. It should be noted that these variations of the ITS2 and D2 regions co-occur at the same individual worms. This was confirmed by sequencing five to six cloned PCR products for each worm. The present study strongly suggests interspecific cross-hybridization between the two species coexisting in Korea.  相似文献   

14.
This study aimed to identify species of Fasciola flukes in Dali Prefecture (Yunnan Province, China) and analyze their genetic diversity. Fasciola flukes (n = 122) were collected from cattle livers in a farmers' market in Xiaguan Town, Dali Prefecture. Nucleotide sequences of ribosomal internal transcribed spacer (ITS) as well as nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) and mitochondrial cytochrome c oxidase subunit 1 (CO1) were amplified, sequenced, and subjected to homology analysis. The heterozygosity ratios of different ITS alleles were determined using the peak-height ratio of heterozygous loci. Multiplex PCR analysis of the nuclear protein coding gene, phosphoenolpyruvate carboxykinase (pepck), was used to identify Fasciola species. Multiple ND1 sequence alignments enabled further genetic diversity analysis of regional Fasciola flukes. Seven ITS sequences belonged to F. hepatica and 115 belonged to Fh/Fg heterozygous flukes. Sequencing analysis of heterozygous flukes revealed 11 heterozygous loci with double peaks, with significantly variable ratios among individuals. ND1 and CO1 results indicated that one specimen was identical to F. hepatica, while 121 specimens were identical to F. gigantica or contained one variable site. Multiplex PCR results for pepck showed that double bands for F. hepatica and F. gigantica were amplified from Dali Fasciola specimens; hence, they were all heterozygous. By combining ITS, ND1, and CO1 sequences with multiplex pepck PCR results, all 122 specimens were identified as Fh/Fg heterozygous Fasciola flukes. Our experimental results preliminarily confirmed a high degree of Fh/Fg heterozygosity among Fasciola flukes in the Dali area. Selecting multiple molecular markers for concurrent analysis will provide more comprehensive and accurate genetic information.  相似文献   

15.
Glycosphingolipids from the parasitic liver flukes Fasciola gigantica and Fasciola hepatica were isolated and their carbohydrate moieties were structurally analysed by methylation analysis, exoglycosidase treatment, on-target exoglycosidase cleavage and matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. For both liver fluke species, the ceramide monohexosides Gal1-ceramide and Glc1-ceramide were found in relative amounts of 1.0 to 0.1, respectively. From F. gigantica, the ceramide dihexoside was isolated in sufficient amounts to be structurally determined as lactosylceramide, Gal beta4-Glc1-ceramide, while for both liver fluke species the ceramide trihexoside was shown to be Gal alpha4Gal beta4-Glc1-ceramide, which is designated as either globotriaosylceramide, Pk-blood group antigen or CD77 leucocyte cluster of differentiation antigen. To our knowledge, this is the first report on the expression of globo-series glycosphingolipids in non-mammalian species. Ceramide analysis of ceramide monohexosides yielded as major components octadecanoic and 2-hydroxyoctadecanoic fatty acids together with C18- and C20-phytosphingosines. By the use of an anti-CD77 monoclonal antibody and the Escherichia coli Shiga toxin B1 subunit, globotriaosylceramide could be immunolocalised to the tegument of F. hepatica cryosections. The sharing of CD77 between liver flukes and their mammalian hosts fits in with the concept of molecular mimicry, which is closely parallel to the established imitation of host CD15 (Lewis X) displayed by the blood fluke Schistosoma mansoni.  相似文献   

16.
All 225 Fasciola flukes obtained from domestic animals (73 cattle, 7 sheep and 1 pig) of 18 distinct geographic areas in Ecuador-South America, were identified as Fasciola hepatica, based on molecular analyses of nuclear pepck and pold genes, and mitochondrial nad1gene as well as the morphological observation of sperm within the seminal vesicles. Fasciola gigantica and parthenogenic Fasciola forms endemic to Asian countries were not found in this study, although zebu cattle and water buffalos have introduced into South America from Asia; this could be due to the absence of suitable intermediate host snails. The results of pepck analysis using multiplex PCR developed previously showed that 32 of the flukes could not be confirmed as F. hepatica, suggesting that the method is unreliable for the accurate discrimination of F. hepatica, and that pepck gene of the species consists of multiple loci, not a single locus. The results of genetic diversity, phylogenetic, and network analyses based on mitochondrial nad1 sequences suggest that F. hepatica populations in South America, including Ecuador, formed from the ancestral F. hepatica individuals introduced into the continent along with anthropogenic movement of livestock infected with the species.  相似文献   

17.
The purpose of this study was to compare the sensitivity and specificity of an ELISA test to detect Fasciola gigantica antigens (coproantigens) in bovine feces, with fecal egg counting and an ELISA for detecting anti-F. gigantica antibodies in serum. Monoclonal antibodies to cathepsin L were generated and used to capture this antigen in feces of infected cattle. Blood, feces, and livers were collected from 150 cattle at an abattoir in Jakarta, Indonesia, for anti-Fasciola antibodies, coproantigen detection, and F. gigantica egg and worm counts. Fluke recovery varied from 1 to 426 per host, with a mean of 32 flukes. The results showed that the sensitivity and specificity of coproantigen detecting ELISA (95 and 91%, respectively) was better than the anti-F. gigantica antibody ELISA (91 and 88%, respectively) and to fecal egg counting (87 and 100%, respectively). The coproantigen ELISA was able to detect 100% of the cattle with >15 flukes. A survey of 305 cattle in central Java over a 10-mo period validated this test in the field, demonstrating a high prevalence of fascioliasis and establishing the test as a useful diagnostic method to determine patent F. gigantica infections in cattle.  相似文献   

18.
Fasciolosis caused by Fasciola spp. (Platyhelminthes: Trematoda: Digenea) is considered as the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. In the endemic regions of the North of Iran, Fasciola hepatica and Fasciola gigantica have been previously characterized on the basis of morphometric differences, but the use of molecular markers is necessary to distinguish exactly between species and intermediate forms. Samples from buffaloes and goats from different localities of northern Iran were identified morphologically and then genetically characterized by sequences of the first (ITS-1) and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA). Comparison of the ITS of the northern Iranian samples with sequences of Fasciola spp. from GenBank showed that the examined specimens had sequences identical to those of the most frequent haplotypes of F. hepatica (n = 25, 48.1%) and F. gigantica (n = 20, 38.45%), which differed from each other in different variable nucleotide positions of ITS region sequences, and their intermediate forms (n = 7, 13.45%), which had nucleotides overlapped between the two Fasciola species in all the positions. The ITS sequences from populations of Fasciola isolates in buffaloes and goats had experienced introgression/hybridization as previously reported in isolates from other ruminants and humans. Based on ITS-1 and ITS-2 sequences, flukes are scattered in pure F. hepatica, F. gigantica and intermediate Fasciola clades, revealing that multiple genotypes of Fasciola are able to infect goats and buffaloes in North of Iran. Furthermore, the phylogenetic trees based upon the ITS-1 and ITS-2 sequences showed a close relationship of the Iranian samples with isolates of F. hepatica and F. gigantica from different localities of Africa and Asia. In the present study, the intergenic transcribed spacers ITS-1 and ITS-2 showed to be reliable approaches for the genetic differentiation of Fasciola spp., providing bases for further studies on F. hepatica, F. gigantica and their intermediate forms in the endemic areas in Asia.  相似文献   

19.
20.
Phenyl vinyl sulfone is a synthetic inhibitor of cysteine protease and has antihelminthic and antiprotozoal properties. Phenyl vinyl sulfone was assayed in vitro for antifasciola activity against adult Fasciola gigantica worms using a well-established culture medium. Worms were treated with phenyl vinyl sulfone for incubation periods ranging from 0 to 12h and its activity was assessed in terms of viability, motility and death of worms. Phenyl vinyl sulfone exhibited a minimum effective concentration of 50 ppm after 12h. Three hundred parts per million concentrations were most potent causing immediate death of adult flukes in vitro. Histopathological studies showed that there was tegumental flattening, rupture of vesicles, and spine loss. Marked reduction in size and number of ova and sperms in the convoluted tubules of the reproductive organs was observed in comparison to the untreated control group. In conclusion, phenyl vinyl sulfone shows potent activity against F. gigantica in vitro, and the authors recommend carrying out more studies to detect its efficacy in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号