首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The primary gestagen of elephants is 5α-dihydroprogesterone (DHP), which is unlike all other mammals studied until now. The level of DHP in elephants equals that of progesterone in other mammals, and elephants are able to bind DHP with similar affinity to progesterone indicating a unique ligand-binding specificity of the elephant progestin receptor (PR). Using site-directed mutagenesis in combination with in vitro binding studies we here report that this change in specificity is due to a single glycine to alanine exchange at position 722 (G722A) of PR, which specifically increases DHP affinity while not affecting binding of progesterone. By conducting molecular dynamics simulations comparing human and elephant PR ligand-binding domains (LBD), we observed that the alanine methyl group at position 722 is able to push the DHP A-ring into a position similar to progesterone. In the human PR, the DHP A-ring position is twisted towards helix 3 of PR thereby disturbing the hydrogen bond pattern around the C3-keto group, resulting in a lower binding affinity. Furthermore, we observed that the elephant PR ligand-binding pocket is more rigid than the human analogue, which probably explains the higher affinity towards both progesterone and DHP. Interestingly, the G722A substitution is not elephant-specific, rather it is also present in five independent lineages of mammalian evolution, suggesting a special role of the substitution for the development of distinct mammalian gestagen systems.  相似文献   

2.
Sea lamprey, a basal vertebrate, contains a progesterone receptor [PR]. An unusual property of lamprey is that gonadotropin-releasing hormone induces synthesis of 15α-hydroxy-progesterone [15α-OH-P] instead of progesterone. There also is indirect evidence for 7α-OH-P in lamprey serum. To determine if there is a structural basis for the binding of 7α-OH-P and 15α-OH-P to lamprey PR, we constructed 3D models of the lamprey PR complexed with progesterone, 7α-OH-P and 15α-OH-P. These 3D models reveal that Met-277 in lamprey PR has a specific interaction with the 15α-hydroxyl on 15α-OH-P and with Met-192, which also contacts the 15α-hydroxyl group. We also find that 7α-OH-P has favorable contacts with side-chains in lamprey PR. BLAST searches reveal that Met-277 on lamprey PR is unique among vertebrate PRs. This unique site on lamprey PR could be a target for compounds to control reproduction in sea lamprey, an environmental pest in Lake Michigan.  相似文献   

3.
Baker ME  Uh KY  Asnaashari P 《Steroids》2011,76(13):1451-1457
The serum of Atlantic sea lamprey, a basal vertebrate, contains two corticosteroids, 11-deoxycortisol and deoxycorticosterone. Only 11-deoxycortisol has high affinity [Kd ∼ 3 nM] for the corticoid receptor [CR] in lamprey gill cytosol. To investigate the binding of 11-deoxycortisol to the CR, we constructed 3D models of lamprey CR complexed with 11-deoxycortisol and deoxycorticosterone. These 3D models reveal that Leu-220 and Met-299 in lamprey CR have contacts with the 17α-hydroxyl on 11-deoxycortisol. Lamprey CR is the ancestor of the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR]. Unlike human MR and human GR, the 3D model of lamprey CR finds a van der Waals contact between Cys-227 in helix 3 and Met-264 in helix 5. Mutant human MR and GR containing a van der Waals contact between helix 3 and helix 5 display enhanced responses to progesterone and glucocorticoids, respectively. We propose that this interaction was present in the CR and lost during the evolution of the MR and GR, leading to changes in their response to progesterone and corticosteroids, respectively.  相似文献   

4.
5.
Heinze M  Monden I  Keller K 《Biochemistry》2004,43(4):931-936
Transmembrane segment 1 of the cysteine-less GLUT1 glucose transporter was subjected to cysteine-scanning mutagenesis. The majority of single-cysteine mutants were functional transporters, as assessed by 2-deoxy-d-glucose uptake or 3-O-methyl-d-glucose transport. Substitution of cysteine for Leu-21, Gly-22, Ser-23, Gln-25, and Gly-27, however, led to uptake rates that were less than 10% of that of the nonmutated cysteine-less GLUT1. NEM, a membrane-permeable agent, was used to identify positions that are sensitive to transport alteration by sulfhydryl reagents, whereas uptake modification by the membrane-impermeant pCMBS indicated accessibility to water-soluble solutes from the external cell environment. Twelve of the 21 single-cysteine mutants were significantly (p < 0.01) affected by NEM, and on the basis of this sensitivity, four positions were identified by pCMBS to form a water-accessible surface within helix 1. The pCMBS-sensitive positions are localized at the exofacial C-terminal end along a circumference of the helix.  相似文献   

6.
The carboxyl-terminal membrane-spanning segment 8 of the glutamate transporter GltT of Bacillus stearothermophilus was studied by cysteine-scanning mutagenesis. 21 single cysteine mutants were constructed in a stretch ranging from Gly-374 to Gln-404. Two mutants were not expressed, four were inactive, and two showed severely reduced glutamate transport activity. Cysteine mutations at the other positions were well tolerated. Only the two most amino- and carboxyl-terminal mutants (G374C, I375C, S399C, and Q404C) could be labeled with the large thiol reagent fluorescein maleimide, indicating unrestricted access and a location in a loop structure outside the membrane. The labeling pattern of these mutants using membrane- permeable and -impermeable thiol reagents showed that the N and C termini of the mutated stretch are located extra- and intracellularly, respectively. Thus, the location of the membrane-spanning segment was confined to a stretch of 23 residues between Gly-374 and Ser-399. Cysteine residues in three mutants in the central part of the segment (M381C, V388C, and N391C) could be labeled with the small and flexible reagent 2-aminoethyl methanethiosulfonate hydrobromide only, suggesting accessibility via a narrow aqueous pore. When the region was modeled as an alpha-helix, all positions at which cysteine mutations lead to inactive or severely impaired transporters cluster on one face of this helix. The inactive mutants showed neither proton motive force-driven uptake activity nor exchange activity nor glutamate binding. The results indicate that transmembrane segment 8 forms an amphipathic alpha-helix. The hydrophilic face of the helix lines an aqueous pore and contains many residues that are important for activity.  相似文献   

7.
Threonine 59, a helix-capping residue at the amino terminus of the longest helix in T4 phage lysozyme, was substituted with valine, alanine, glycine, serine, asparagine, and aspartic acid. The valine, alanine, and glycine replacements were observed to be somewhat more destabilizing than serine, asparagine, and aspartic acid. The crystal structures of the different variants showed that changes in conformation occurred at the site of substitution, including Asp 61, which is nearby, as well as displacement of a solvent molecule that is hydrogen-bonded to the gamma-oxygen of Thr 59 in wild-type lysozyme. Neither the structures nor the stabilities of the mutant proteins support the hypothesis of Serrano and Fersht (1989) that glycine and alanine are better helix-capping residues than valine because a smaller-sized residue allows better hydration at the end of the helix. In the aspartic acid and asparagine replacements the substituted side chains form hydrogen bonds with the end of the helix, as does threonine and serine at this position. In contrast, however, the Asp and Asn side chains also make unusually close contacts with carbon atoms in Asp 61. This suggests a structural basis for the heretofore puzzling observations that asparagine is more frequently observed as a helix-capping residue than threonine [Richardson, J. S., & Richardson, D. C. (1988) Science 240, 1648-1652] yet Thr----Asn replacements at N-cap positions in barnase were found to be destabilizing [Serrano, L., & Fersht, A. R. (1989) Nature 342, 296-299].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
J Hempel  K Harper  R Lindahl 《Biochemistry》1989,28(3):1160-1167
Peptides from rat liver aldehyde dehydrogenase (AIDH) induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) treatment match the AIDH structure from HTC rat hepatoma cells (HTC-AIDH) at all positions examined, indicating induction of the same gene product by two independent routes. This 452 amino acid residue, class 3 AIDH structure differs substantially from the 500-residue AIDH structures isolated from normal liver cytosol (class 1) and mitochondria (class 2). Despite a 29.8% identity in 429 overlapping amino acids vs the human class 1 enzyme (27.7% vs class 2), neither the N- nor C-termini coincide, and gaps are introduced to optimize the alignment. Two residues placed in the active site of human liver AIDH by chemical modification, Cys-302 and Glu-268, are conserved in class 3 AIDH as Cys-243 and Glu-209. Cys-243/302 is the only cysteine residue conserved in all known AIDH structures. Gly-245 and Gly-250 of class 1/2 AIDHs, fitting the patterns of glycine residues in coenzyme binding fold of other dehydrogenases, are also conserved. Otherwise, Cys-49, Cys-162, and Glu-487, to which functional importance has also been ascribed, are not retained in the class 3 structure. Overall, a high conservation of Gly, Pro, and Trp and similar patterns of predicted secondary structure indicate general conservation of tertiary structure, as noted with other distantly related proteins. Three exon boundaries from the human liver mitochondria AIDH gene directly correspond to the N-terminus of the rat class 3 protein and to two of the gaps in the alignment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
4(R)-Hydroxyproline in the Yaa position of the -Gly-Xaa-Yaa-repeated sequence of collagen plays a crucial role in the stability of the triple helix. Since the peptide (4(R)-Hyp-Pro-Gly)10 does not form a triple helix, it was generally believed that polypeptides with a -Gly-4(R)-Hyp-Yaa-repeated sequence do not form a triple helix. Recently, we found that acetyl-(Gly-4(R)-Hyp-Thr)10-NH2 forms a triple helix in aqueous solutions. To further study the role of 4(R)-hydroxyproline in the Xaa position, we made a series of acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptides where Yaa was alanine, serine, valine, and allo-threonine. We previously hypothesized that the hydroxyl group of threonine might form a hydrogen bond to the hydroxyl group of 4(R)hydroxyproline. In water, only the threonine- and the valine-containing peptides were triple helical. The remaining peptides did not form a triple helix in water. In 1,2- and in 1,3-propanediol at 4 degrees C, all the soluble peptides were triple helical. From the transition temperature of the triple helices, it was found that among the examined residues, threonine was the most stable residue in the acetyl-(Gly-4(R)-Hyp-Yaa)10-NH2 peptide. The transition temperatures of the valine- and allo-threonine-containing peptides were 10 degrees lower than those of the threonine peptide. Surprisingly, the serine-containing peptide was the least stable. These results indicate that the stability of these peptides depends on the presence of a methyl group as well as the hydroxyl group and that the stereo configuration of the two groups is essential for the stability. In the threonine peptide, we hypothesize that the methyl group shields the interchain hydrogen bond between the glycine and the Xaa residue from water and that the hydroxyl groups of threonine and 4(R)hydroxyproline can form direct or water-mediated hydrogen bonds.  相似文献   

10.
Signal sequences often contain alpha-helix-destabilizing amino acids within the hydrophobic core. In the precursor of the Escherichia coli outer-membrane protein PhoE, the glycine residue at position -10 (Gly-10) is thought to be responsible for the break in the alpha-helix. Previously, we showed that substitution of Gly-10 by alpha-helix-promoting residues (Ala, Cys or Leu) reduced the proton-motive force dependency of the translocation of the precursor, but the actual role of the helix breaker remained obscure. Here, we considered the possibility that extension of the alpha-helical structure in the signal sequence resulting from the Gly-10 substitutions affects the targeting pathway of the precursor. Indeed, the mutations resulted in reduced dependency on SecB for targeting in vivo. In vitro cross-linking experiments revealed that the G-10L and G-10C mutant PhoE precursors had a dramatically increased affinity for P48, one of the constituents of the signal-recognition particle (SRP). Furthermore, in vitro cross-linking experiments revealed that the G-10L mutant protein is routed to the SecYEG translocon via the SRP pathway, the targeting pathway that is exploited by integral inner-membrane proteins. Together, these data indicate that the helix breaker in cleavable signal sequences prevents recognition by SRP and is thereby, together with the hydrophobicity of the signal sequence, a determinant of the targeting pathway.  相似文献   

11.
A model has been proposed for the structure of the Glut1 glucose transporter based on the results of mutagenesis studies and homology modeling in which eight transmembrane segments form an inner helical bundle surrounded by four outer helices. The role of transmembrane segment 3 in this structural model was investigated using cysteine-scanning mutagenesis in conjunction with the membrane-impermeant, sulfhydryl-specific reagent, p-chloromercuribenzenesulfonate (pCMBS). Twenty-one Glut1 mutants were created from a fully functional, cysteine-less, parental Glut1 molecule by successively changing each residue along transmembrane helix 3 to a cysteine. The single cysteine mutants were then expressed in Xenopus oocytes, and their expression levels, transport activities, and sensitivities to pCMBS were determined. Cysteine substitution at methionine 96 abolished transport activity, whereas substitutions at the other positions resulted in either modest reductions or no significant effect on transport activity. In striking contrast to all other helices that have been examined to date, only one of the 21 helix 3 single-cysteine mutants was inhibited by pCMBS, suggesting that only a small portion of this helix is exposed to the external solvent. This result is consistent with predictions based on our current structural model, in which helix 3 is one of four outer helices that surround the inner helical bundle that comprises the aqueous substrate-binding cavity. An updated two-dimensional model for the orientation of the 12 transmembrane helices and the conformation of the exofacial glucose-binding site of Glut1 is presented that is consistent with existing experimental data.  相似文献   

12.
Mutation of Gly-444 inactivates the S. pombe malic enzyme   总被引:1,自引:0,他引:1  
A mutant malic enzyme gene, mae2, was cloned from a strain of Schizosaccharomyces pombe that displayed almost no malic enzyme activity. Sequence analysis revealed only one codon-altering mutation, a guanine to adenine at nucleotide 1331, changing the glycine residue at position 444 to an aspartate residue. Gly-444 is located in Region H, previously identified as one of eight highly conserved regions in malic enzymes. We found that Gly-444 is absolutely conserved in 27 malic enzymes from various prokaryotic and eukaryotic sources, as well as in three bacterial malolactic enzymes investigated. The evolutionary conservation of Gly-444 suggests that this residue is important for enzymatic function.  相似文献   

13.
14.
15.
Sixteen single-cysteine substitution mutants of rhodopsin were prepared in the sequence 306-321 which begins in transmembrane helix VII and ends at the palmitoylation sites at 322C and 323C. The substituted cysteine residues were modified with a selective reagent to generate a nitroxide side chain, and the electron paramagnetic resonance spectrum of each spin-labeled mutant was analyzed in terms of residue accessibility and mobility. The periodic behavior of these parameters along the sequence indicated that residues 306-314 were in a regular alpha-helical conformation representing the end of helix VII. This helix apparently extends about 1.5 turns above the surface of the membrane, with one face in strong tertiary interaction with the core of the protein. For the segment 315-321, substituted cysteine residues at 317, 318, 320, and 321 had low reactivity with the spin-label reagent. This segment has the most extensive tertiary interactions yet observed in the rhodopsin extra-membrane sequences at the cytoplasmic surface. Previous studies showed the spontaneous formation of a disulfide bond between cysteine residues at 65 and 316. This result indicates that at least some of the tertiary contacts made in the 315-321 segment are with the sequence connecting transmembrane helices I and II. Photoactivation of rhodopsin produces changes in structure detected by spin labels at 306, 313, and 316. The changes at 313 can be accounted for by movements in the adjacent helix VI.  相似文献   

16.
The rate of receptor-mediated endocytosis of diferric 125I-transferrin by Chinese-hamster ovary cells expressing human transferrin receptors was compared with the rate measured for cells expressing hamster transferrin receptors. It was observed that the rate of endocytosis of the human transferrin receptor was significantly higher than that for the hamster receptor. In order to examine the molecular basis for the difference between the observed rates of endocytosis, a cDNA clone corresponding to the cytoplasmic domain of the hamster receptor was isolated. The predicted primary sequence of the cytoplasmic domain of the hamster transferrin receptor is identical with that of the human receptor, except at position 20, where a tyrosine residue in the human sequence is replaced with a cysteine residue. To test the hypothesis that this structural change in the receptor is related to the difference in the rate of internalization, we used site-directed mutagenesis to examine the effect of the replacement of tyrosine-20 with a cysteine residue in the human transferrin receptor. It was observed that the substitution of tyrosine-20 with cysteine caused a 60% inhibition of the rate of iron accumulation by cells incubated with [59Fe]diferric transferrin. No significant difference between the rate of internalization of the mutant (cysteine-20) human receptor and the hamster receptor was observed. Thus the substitution of tyrosine-20 with a cysteine residue can account for the difference between the rate of endocytosis of the human and hamster transferrin receptors.  相似文献   

17.
Affected individuals from two apparently distinct, mild osteogenesis imperfecta families were heterozygous for a G to T transition in the COL1A2 gene that resulted in cysteine for glycine substitutions at position 646 in the alpha 2(I) chain of type I collagen. A child with a moderately severe form of osteogenesis imperfecta was heterozygous for a G to T transition that resulted in a substitution of cysteine for glycine at position 259 in the COL1A2 gene. Type I collagen molecules containing an alpha 2(I) chain with cysteine at position 259 denaturated at a lower temperature than molecules containing an alpha 2(I) chain with cysteine at position 646. In contrast to cysteine for glycine substitutions in the alpha 1(I) chain, the severity of the osteogenesis imperfecta phenotype is not directly proportional to the distance of the mutation from the amino-terminal end of the triple helix. These findings could be explained if the type I collagen triple helix contains discontinuous domains that differ in their contributions to maintaining helix stability.  相似文献   

18.
The neuropeptide galanin is a 29- or 30-residue peptide whose physiological functions are mediated by G-protein-coupled receptors. Galanin's agonist activity has been shown to be associated with the N-terminal sequence, galanin(1-16). Conformational investigations previously carried out on full-length galanin have, furthermore, indicated the presence of a helical conformation in the neuropeptide's N-terminal domain. Several cyclic lactam analogues of galanin(1-16)-NH2 were prepared in an attempt to stabilize an N-terminal helix in the peptide. Here we describe and compare the solution conformational properties of these analogues in the presence of SDS micelles as determined by NMR, CD, and fluorescence spectroscopy. Differences in CD spectral profiles were observed among the compounds that were studied. Both c[D4, K8]Gal(1-16)-NH2 and c[D4,K8]Gal(1-12)-NH2 adopted stable helical conformations in the micelle solution. On the basis of the analyses of their respective alpha H chemical shifts and NOE patterns, this helix was localized to the first 10 residues. The distance between the aromatic rings of Trp2 and Tyr9 in c[D4, K8]Gal(1-16)-NH2 was determined to be 10.8 +/- 3 A from fluorescence resonance energy transfer measurements. This interchromophore spacing was found to be more consistent with a helical structure than an extended one. Removal of the Gly1 residue in compounds c[D4,K8]Gal(1-16)-NH2 and c[D4, K8]Gal(1-12)-NH2 resulted in a loss of helical conformation and a concomitant reduction in binding potency at the GalR1 receptor but not at the GalR2 receptor. The nuclear Overhauser enhancements obtained for the Gly1 deficient analogues did, however, reveal the presence of nascent helical structures within the N-terminal sequence. Decreasing the ring structure size in c[D4, K8]Gal(1-16)-NH2 by replacing Lys8 with an ornithine residue or by changing the position of the single lysine residue from eight to seven was accompanied by a complete loss of helical structure and dramatically reduced receptor affinity. It is concluded from the data obtained for the series of cyclic galanin(1-16)-NH2 analogues that both the ring structure size and the presence of an N-terminal glycine residue are important for stabilizing an N-terminal helix in these compounds. However, although an N-terminal helix constitutes a predominant portion of the conformational ensemble for compounds c[D4,K8]Gal(1-16)-NH2 and c[D4, K8]Gal(1-12)-NH2, these peptides nevertheless are able to adopt other conformations in solution. Consequently, the correlation between the ability of the cyclic galanin analogues to adopt an N-terminal helix and bind to the GalR1 receptor may be considered as a working hypothesis.  相似文献   

19.
Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment.  相似文献   

20.
Organic cation transporters are membrane potential-dependent facilitative diffusion systems. Functional studies, extensive mutagenesis, and homology modeling indicate the following mechanism. A transporter conformation with a large outward-open cleft binds extracellular substrate, passes a state in which the substrate is occluded, turns to a conformation with an inward-open cleft, releases substrate, and subsequently turns back to the outward-open state. In the rat organic cation transporter (rOct1), voltage- and ligand-dependent movements of fluorescence-labeled cysteines were measured by voltage clamp fluorometry. For fluorescence detection, cysteine residues were introduced in extracellular parts of cleft-forming transmembrane α-helices (TMHs) 5, 8, and 11. Following expression of the mutants in Xenopus laevis oocytes, cysteines were labeled with tetramethylrhodamine-6-maleimide, and voltage-dependent conformational changes were monitored by voltage clamp fluorometry. One cysteine was introduced in the central domain of TMH 11 replacing glycine 478. This domain contains two amino acids that are involved in substrate binding and two glycine residues (Gly-477 and Gly-478) allowing for helix bending. Cys-478 could be modified with the transported substrate analog [2-(trimethylammonium)-ethyl]methanethiosulfonate but was inaccessible to tetramethylrhodamine-6-maleimide. Voltage-dependent movements at the indicator positions of TMHs 5, 8, and 11 were altered by substrate applications indicating large conformational changes during transport. The G478C exchange decreased transporter turnover and blocked voltage-dependent movements of TMHs 5 and 11. [2-(Trimethylammonium)-ethyl]methanethiosulfonate modification of Cys-478 blocked substrate binding, transport activity, and movement of TMH 8. The data suggest that Gly-478 is located within a mechanistically important hinge domain of TMH 11 in which substrate binding induces transport-related structural changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号