首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The DNA topoisomerase I (topo1) inhibitor topotecan (TPT) and topo2 inhibitor mitoxantrone (MXT) damage DNA inducing formation of DNA double-strand breaks (DSBs). We have recently examined the kinetics of ATM and Chk2 activation as well as histone H2AX phosphorylation, the reporters of DNA damage, in individual human lung adenocarcinoma A549 cells treated with these drugs. Using a phospho-specific Ab to tumor suppressor protein p53 phosphorylated on Ser15 (p53-Ser15P) combined with an Ab that detects p53 regardless of the phosphorylation status and multiparameter cytometry we correlated the TPT- and MXT- induced p53-Ser15P with ATM and Chk2 activation as well as with H2AX phosphorylation in relation to the cell cycle phase. In untreated interphase cells, p53-Ser15P had "patchy" localization throughout the nucleoplasm while mitotic cells showed strong p53-Ser15P cytoplasmic immunofluorescence (IF). The intense phosphorylation of p53-Ser15, combined with activation of ATM and Chk2 (involving centrioles) as well as phosphorylation of H2AX seen in the untreated mitotic cells, suggest mobilization of the DNA damage detection/repair machinery in controlling cytokinesis. In the nuclei of cells treated with TPT or MXT, the expression of p53-Ser15P appeared as closely packed foci of intense IF. Following TPT treatment, the induction of p53-Ser15P was most pronounced in S-phase cells while no significant cell cycle phase differences were seen in cells treated with MXT. The maximal increase in p53-Ser15P expression, rising up to 2.5-fold above the level of its constitutive expression, was observed in cells treated with TPT or MXT for 4 - 6 h. This maximum expression of p53-Ser15P coincided in time with the peak of Chk2 activation but not with ATM activation and H2AX phosphorylation, both of which crested 1-2 h after the treatment with TPT or MXT. The respective kinetics of p53-Ser15 phosphorylation versus ATM and Chk2 activation suggest that in response to DNA damage by TPT or MXT, Chk2 rather than ATM mediates p53 phosphorylation.  相似文献   

2.
The p53 cofactor Strap (stress responsive activator of p300) is directly targeted by the DNA damage signalling pathway where phosphorylation by ATM (ataxia telangiectasia mutated) kinase facilitates nuclear accumulation. Here, we show that Strap regulation reflects the coordinated interplay between different DNA damage-activated protein kinases, ATM and Chk2 (Checkpoint kinase 2), where phosphorylation by each kinase provides a distinct functional consequence on the activity of Strap. ATM phosphorylation prompts nuclear accumulation, which we show occurs by impeding nuclear export, whereas Chk2 phosphorylation augments protein stability once Strap has attained a nuclear location. These results highlight the various functional roles undertaken by the DNA damage signalling kinases in Strap control and, more generally, shed light on the pathways that contribute to the regulation of the p53 response.  相似文献   

3.
4.
In the present study, we employed a well established JB6 mouse epithelial cell model to define the molecular mechanism of efficacy of a naturally occurring flavonoid silibinin against ultraviolet B (UVB)-induced skin tumorigenesis. UVB exposure of cells caused a moderate phosphorylation of ERK1/2 and Akt and a stronger phosphorylation of p53 at Ser(15), which was enhanced markedly by silibinin pretreatment. Kinase activity of ERK1/2 for Elk-1 and Akt for glycogen synthase kinase-3beta was also potently enhanced by silibinin pretreatment. Furthermore, silibinin increased the UVB-induced level of cleaved caspase 3 as well as apoptotic cells. Based on these observations, next we investigated the role of upstream kinases, ATM/ATR and DNA-PK, which act as sensors for UVB-induced DNA damage and transduce signals leading to DNA repair or apoptosis. Whereas UVB strongly activated ATM as observed by Ser(1981) phosphorylation, it was not affected by silibinin pretreatment. However, pretreatment of cells with the DNA-protein kinase (PK) inhibitor LY294002 strongly reversed silibinin-enhanced Akt-Ser(473) and p53-Ser(15) as well as ERK1/2 phosphorylation together with a dose-dependent decrease in cleaved caspase 3 and apoptosis (p < 0.05). In addition, silibinin pretreatment strongly enhanced H2A.X-Ser(139) phosphorylation and DNA-PK-associated kinase activity as well as the physical interaction of p53 with DNA-PK; pretreatment of cells with LY294002 but not caffeine abolished the silibinin-caused increase in both DNA-PK activation and p53-Ser(15) phosphorylations. Together, these findings suggest that silibinin preferentially activates the DNA-PK-p53 pathway for apoptosis in response to UVB-induced DNA damage, and that this could be a predominant mechanism of silibinin efficacy against UVB-induced skin cancer.  相似文献   

5.
The DNA damage surveillance network orchestrates cellular responses to DNA damage through the recruitment of DNA damage-signaling molecules to DNA damage sites and the concomitant activation of protein phosphorylation cascades controlled by the ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) kinases. Activation of ATM/ATR triggers cell cycle checkpoint activation and adaptive responses to DNA damage. Recent studies suggest that protein ubiquitylation or degradation plays an important role in the DNA damage response. In this study, we examined the potential role of the proteasome in checkpoint activation and ATM/ATR signaling in response to UV light-induced DNA damage. HeLa cells treated with the proteasome inhibitor MG-132 showed delayed phosphorylation of ATM substrates in response to UV light. UV light-induced phosphorylation of 53BP1, as well as its recruitment to DNA damage foci, was strongly suppressed by proteasome inhibition, whereas the recruitment of upstream regulators of 53BP1, including MDC1 and H2AX, was unaffected. The ubiquitin-protein isopeptide ligase RNF8 was critical for 53BP1 focus targeting and phosphorylation in ionizing radiation-damaged cells, whereas UV light-induced 53BP1 phosphorylation and targeting exhibited partial dependence on RNF8 and the ubiquitin-conjugating enzyme UBC13. Suppression of RNF8 or UBC13 also led to subtle defects in UV light-induced G2/M checkpoint activation. These findings are consistent with a model in which RNF8 ubiquitylation pathways are essential for 53BP1 regulation in response to ionizing radiation, whereas RNF8-independent pathways contribute to 53BP1 targeting and phosphorylation in response to UV light and potentially other forms of DNA replication stress.  相似文献   

6.
7.
Hyperoxia has been shown to cause DNA damage resulting in growth arrest of cells in p53-dependent, as well as p53-independent, pathways. Although H2O2 and other peroxides have been shown to induce ataxia telangiectasia-mutated (ATM)-dependent p53 phosphorylation in response to DNA damage, the signal transduction mechanisms in response to hyperoxia are currently unknown. Here we demonstrate that hyperoxia phosphorylates the Ser15 residue of p53 independently of ATM. Hyperoxia phosphorylated p53 (Ser15) in DNA-dependent protein kinase null (DNA-PK-/-) cells, indicating that it may not depend on DNA-PK for phosphorylation of p53 (Ser15). We show that Ser37 and Ser392 residues of p53 are also phosphorylated in an ATM-independent manner in hyperoxia. In contrast, H2O2 did not phosphorylate Ser37 in either ATM+/+ or ATM-/- cells. Furthermore, H2O2 failed to phosphorylate Ser15 in ATM-/- cells. Additionally, overexpression of kinase-inactive ATM-and-Rad3-related (ATR) in HEK293T cells diminished Ser15, Ser37, and Ser392 phosphorylation compared with vector-only transfected cells. In contrast, wild-type ATR overexpression did not diminish Ser15, Ser37, or Ser392 phosphorylation. We also show that checkpoint kinase 1 (Chk1) is phosphorylated on Ser345 in response to hyperoxia, which could be inhibited by caffeine or wortmannin, potent inhibitors of phosphoinositide 3-kinase-related kinases. Hyperoxia also phosphorylated Chk1 in ATM+/+ as well as in ATM-/- cells, demonstrating an ATM-independent mechanism in Chk1 phosphorylation. Together, our data suggest that hyperoxia activates the ATR-Chk1 pathway and phosphorylates p53 at multiple sites in an ATM-independent manner, which is different from other forms of oxidative stress such as H2O2 or UV light.  相似文献   

8.
Effects of hyperthermia on p53 protein expression and activity   总被引:5,自引:0,他引:5  
Although p53 responses after DNA damage have been investigated extensively, p53 responses after heat shock, which exerts cytotoxic action by mechanisms other than direct induction of DNA damage, are less well characterized. We investigated, therefore, the effect of hyperthermic exposures on the levels and DNA-binding activity of p53. Experiments were carried out with U2OS and ML-1 cells, known to express wild-type p53 protein. Although heating at 41 degrees C for up to 6 h had only a small effect on p53 levels or DNA binding activity, exposure to temperatures between 42.5 and 45.5 degrees C caused an immediate decrease in protein levels that was associated with a reduction in DNA binding activity. This observation is compatible with a high lability of p53 to heat shock, or heat sensitivity of the pathway regulating p53 levels in non-stressed cells. When cells were heated to 42.5 degrees C and returned to normal temperatures, a strong p53 response associated with an increase in protein levels and DNA binding activity was observed, suggesting the production of p53-inducing cellular damage. At higher temperatures, however, this response was compromised in an exposure-time-dependent manner. The increase in DNA binding activity was more heat sensitive than the increase in p53 levels and was inhibited at lower temperatures and shorter exposure times. Thus, the pathway of p53 activation is itself heat sensitive and compromised at high levels of exposure. Compared to p53 activation after exposure to ionizing radiation, heat-induced activation is rapid and short lived. When cells were exposed to combined heat and radiation, the response observed approximated that of cells exposed to heat alone. Wortmannin at 10 microM inhibited p53 activation for up to 2 h after heat shock suggesting the involvement of wortmannin-sensitive kinases, such as DNA-PK and ATM. Heat shock causes phosphorylation of p53 at Serine-15, but there is no correlation between phosphorylation at this site and activation of the protein. The results in aggregate indicate p53 activation in the absence of DNA damage by a heat-sensitive mechanism operating with faster kinetics than radiation-induced p53 activation. The former response may induce pathways preventing other stimuli from activating p53, as heat-induced activation of p53 is dominant over activation of p53 by DNA damage in combined-treatment experiments. These observations suggest means for abrogating p53 induction after DNA damage with the purpose of potentiating response and enhancing cell killing.  相似文献   

9.
Single-stranded DNA has been speculated to be the initial signal in the DNA damage signaling pathway. We showed that introduction of single-stranded DNA with diverse sequences into mammalian cells induced DNA damage as well as apoptosis signals. Like DNA damaging agents, single-stranded DNA up-regulated p53 and activated the nuclear kinase ataxia telangiectasia mutant (ATM) as evidenced by phosphorylation of histone 2AX, an endogenous ATM substrate. Single-stranded DNA also triggered apoptosis as evidenced by the formation of caspase-dependent chromosomal DNA strand breaks, cytochrome c release, and increase in reactive oxygen species production. Moreover, single-stranded DNA-induced apoptosis was reduced significantly in p53 null cells and in cells treated with ATM small interfering RNA. These results suggest that single-stranded DNA may act upstream of ATM/p53 in DNA damage signaling.  相似文献   

10.
11.
12.
p53 suppresses tumor development by responding to unauthorized cell proliferation, growth factor or nutrient deprivation, and DNA damage. Distinct pathways have been identified that cause p53 activation, including ARF-dependent response to oncogene activation, ribosomal protein-mediated response to abnormal rRNA synthesis, and ATM-dependent response to DNA damage. Elucidating the mechanisms of these signaling events are critical for understanding tumor suppression by p53 and development of novel cancer therapeutics. More than a decade of research has established the ATM kinase as a key molecule that activates p53 after DNA damage. Our recent study revealed that ATM phosphorylation of MDM2 is likely to be the key step in causing p53 stabilization. Upon activation by ionizing irradiation, ATM phosphorylates MDM2 on multiple sites near its RING domain. These modifications inhibit the ability of MDM2 to poly-ubiquitinate p53, thus leading to its stabilization. MDM2 phosphorylation does not inactivate its E3 ligase activity per se, since MDM2 self-ubiquitination and MDMX ubiquitination functions are retained. The selective inhibition of p53 poly-ubiquitination is accomplished through disrupting MDM2 oligomerization that may provide a scaffold for processive elongation of poly ubiquitin chains. These findings suggest a novel model of p53 activation and a general mechanism of E3 ligase regulation by phosphorylation.  相似文献   

13.
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.  相似文献   

14.
15.
16.
17.
18.
Rapid activation of p53 by ionizing irradiation is a classic DNA damage response mediated by the ATM kinase. However, the major signalling target and mechanism that lead to p53 stabilization are unknown. We show in this report that ATM induces p53 accumulation by phosphorylating the ubiquitin E3 ligase MDM2. Multiple ATM target sites near the MDM2 RING domain function in a redundant manner to provide robust DNA damage signalling. In the absence of DNA damage, the MDM2 RING domain forms oligomers that mediate p53 poly ubiquitination and proteasomal degradation. Phosphorylation by ATM inhibits RING domain oligomerization, specifically suppressing p53 poly ubiquitination. Blocking MDM2 phosphorylation by alanine substitution of all six phosphorylation sites results in constitutive degradation of p53 after DNA damage. These observations show that ATM controls p53 stability by regulating MDM2 RING domain oligomerization and E3 ligase processivity. Promoting or disrupting E3 oligomerization may be a general mechanism by which signalling kinases regulate ubiquitination reactions, and a potential target for therapeutic intervention.  相似文献   

19.
In response to DNA damage, ataxia-telangiectasia mutant and ataxia-telangiectasia and Rad-3 activate p53, resulting in either cell cycle arrest or apoptosis. We report here that DNA damage stimuli, including etoposide (ETOP), adriamycin (ADR), ionizing irradiation (IR), and ultraviolet irradiation (UV) activate ERK1/2 (ERK) mitogen-activated protein kinase in primary (MEF and IMR90), immortalized (NIH3T3) and transformed (MCF-7) cells. ERK activation in response to ETOP was abolished in ATM-/- fibroblasts (GM05823) and was independent of p53. The MEK1 inhibitor PD98059 prevented ERK activation but not p53 stabilization. Maximal ERK activation in response to DNA damage was not attenuated in MEF(p53-/-). However, ERK activation contributes to either cell cycle arrest or apoptosis in response to low or high intensity DNA insults, respectively. Inhibition of ERK activation by PD98059 or U0126 attenuated p21(CIP1) induction, resulting in partial release of the G(2)/M cell cycle arrest induced by ETOP. Furthermore, PD98059 or U0126 also strongly attenuated apoptosis induced by high dose ETOP, ADR, or UV. Conversely, enforced activation of ERK by overexpression of MEK-1/Q56P sensitized cells to DNA damage-induced apoptosis. Taken together, these results indicate that DNA damage activates parallel ERK and p53 pathways in an ATM-dependent manner. These pathways might function cooperatively in cell cycle arrest and apoptosis.  相似文献   

20.
The p53 protein acts a tumor suppressor by inducing cell cycle arrest and apoptosis in response to DNA damage or oncogene activation. Recently, it has been proposed that phosphorylation of serine 15 in human p53 by ATM (mutated in ataxia telangiectasia) kinase induces p53 activity by interfering with the Mdm2-p53 complex formation and inhibiting Mdm2-mediated destabilization of p53. Serine 18 in murine p53 has been implicated in mediating an ATM- and ataxia telangiectasia-related kinase-dependent growth arrest. To explore further the physiological significance of phosphorylation of p53 on Ser18, we generated mice bearing a serine-to-alanine mutation in p53. Analysis of apoptosis in thymocytes and splenocytes following DNA damage revealed that phosphorylation of serine 18 was required for robust p53-mediated apoptosis. Surprisingly, p53Ser18 phosphorylation did not alter the proliferation rate of embryonic fibroblasts or the p53-mediated G(1) arrest induced by DNA damage. In addition, endogenous basal levels and DNA damage-induced levels of p53 were not affected by p53Ser18 phosphorylation. p53Ala18 mice developed normally and were not susceptible to spontaneous tumorigenesis, and the reduced apoptotic function of p53Ala18 did not rescue the embryo-lethal phenotype of Mdm2-null mice. These results indicate that phosphorylation of the ATM target site on p53 specifically regulates p53 apoptotic function and further reveal that phosphorylation of p53 serine 18 is not required for p53-mediated tumor suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号