首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Globin prepared from hemoglobin of the brown lemur (Lemur fulvus fulvus) was separated into alpha and beta chains by chromatography on a CM 52 column. The S-aminoethylated alpha and beta chains were each digested with trypsin and resulting peptides were isolated. The amino acid sequences of the tryptic peptides were established. The ordering of these peptides in the alpha and beta chains was deduced from the homology of their amino acid sequences with that of human adult hemoglobin. The primary structure of brown lemur hemoglobin thus obtained differs from that of human hemoglobin in 15 amino acids in the alpha chain and 26 in the beta chain.  相似文献   

2.
The hemoglobin molecule of the commercially important brine shrimp Artemia sp. has been used extensively as a model for the study of molecular evolution. It consists of nine globin domains joined by short linker sequences, and these domains are believed to have originated through a series of duplications from an original globin gene. In addition, in Artemia, two different polymers of hemoglobin, called C and T, are found which differ by 11.7% at the amino acid level and are believed to have diverged about 60 MYA. This provides a set of data of 18 globin domain sequences that have evolved in the same organism. The pattern of amino acid substitution between these two polymers is unusual, with pairs of equivalent domains displaying differences of up to 2.7-fold in total amino acid substitution. Such differences would reflect a similar range of molecular-clock rates in what appear to be duplicate, structurally equivalent domains. In order to provide a reference outgroup, we sequenced the cDNA for a nine-domain hemoglobin (P) from another genus of brine shrimp, Parartemia zietziana, which differs morphologically and ecologically from Artemia and is endemic to Australia. Parartemia produces only one hundredth the amount of hemoglobin that Artemia produces and does not upregulate production in response to low oxygen partial pressure. Comparison of the globin domains at the amino acid and DNA levels suggests that the Artemia globin T gene has accumulated substitutions differently from the Parartemia P and Artemia C globin genes. We discuss the questions of accelerated evolution after duplication and possible functions for the Parartemia globin.  相似文献   

3.
1. Partial amino acid sequences for several sockeye salmon hemoglobin beta-chains have been determined and compared to several other fish beta-chain sequences. 2. A 90% homology exists between the sockeye cathodal (C1) beta-chain and the trout Hb I beta-chain for residues 1-19. 3. The sockeye salmon anodal (A1-3) beta-chain is virtually identical to the trout HB IV beta-chain for the first 55 amino acid residues. 4. The alpha-chains of the sockeye salmon appear to be acetylated at the N-terminal position and about 0.6% of the sockeye hemoglobin is glycosylated.  相似文献   

4.
5.
The amino acid sequence of hemoglobins I (pI 6.15 as oxyhemoglobin) and II (pI 5.64 as oxyhemoglobin) from the nitrogen-fixing root nodules of Parasponia rigida have been determined by protein sequencing. The sequence of hemoglobin I (pI 6.16, as oxyhemoglobin) from Parasponia andersonii was re-examined and the corrected primary structure, now in agreement with that predicted from the DNA sequence, is reported. The three Parasponia hemoglobins contain 161 amino acid residues (Mr approximately equal to 18,700 including the heme) with a single cysteine residue and five methionine residues. The N-terminal serine is blocked by an acetyl group. The primary structure of the Parasponia hemoglobins is highly conserved. Hemoglobins I from the two species of Parasponia are identical; both show microheterogeneity at position 30 (Asp/Glu substitution) and hemoglobin I from P. rigida shows microheterogeneity at position 150 (Ala/Val) while hemoglobin I from P. andersonii has only an Ala at 150. P. rigida hemoglobin II shows no microheterogeneity at these positions, having Asp and Val residues respectively, and it contains a single amino acid change of a Gln for an Arg at position 85, which accounts for the 0.5 unit difference in isoelectric point observed between hemoglobins I and II. The sequence data are consistent with allelic heterogeneity at a single locus rather than different genes.  相似文献   

6.
Exposure of human red cells to oxidants such as phenylhydrazine, 2,4-dimethylphenylhydrazine and 4-hydrazinobenzoic acid stimulates the proteolysis of hemoglobin as evidenced by the increase in the rate of the free alanine and acid soluble amino groups released. An enzyme responsible for proteolytic degradation of oxidized hemoglobin, was purified from cytosolic fraction of erythrocytes by a DEAE-batch procedure followed by gel-filtration and ion-exchange chromatography. The final enzyme preparation produces a single band in non-denaturing polyacrylamide gel electrophoresis, and eight different bands of 23-32 kDa when subjected to polyacrylamide gel electrophoresis under denaturing conditions. The native enzyme has a molecular mass of about 700 kDa as estimated by gel filtration. The enzyme, unable to hydrolyze native hemoglobin, cleaves phenylhydrazine-treated hemoglobin into small peptides without free amino acid release. In addition, the enzyme shows an endopeptidase activity towards synthetic peptides having a tyrosine or an arginine in the P1 position, whereas it does not hydrolyze shorter peptides and those with a proline in the P1 or P2 position. The proteolytic activity of the enzyme against oxidized hemoglobin is inhibited by chymostatin and p-chloromercuribenzoate, while it is stimulated by N-ethylmaleimide and epoxysuccinylleucylamido-(4-guanidino)butane (E-64). The peptidase activity assayed on succinyl-Leu-Leu-Val-Tyr-MCA is inhibited by chymostatin, hemin, N-ethylmaleimide and p-chloromercuribenzoate. The results obtained show that in human erythrocytes oxidized hemoglobin is cleaved into peptides by a high molecular mass proteinase identified as a member of the multicatalytic proteinase family. It is also suggested that the complete degradation of oxidized hemoglobin to free amino acids requires the involvement of a further proteolytic enzyme(s) which remain(s) to be identified.  相似文献   

7.
M Hasegawa  T A Yano 《Origins of life》1975,6(1-2):219-227
The entropy of the amino acid sequences coded by DNA is considered as a measure of diversity of variety of proteins, and is taken as a measure of evolution. The DNA or m-RNA sequence is considered as a stationary second-order Markov chain composed of four kinds of bases. Because of the biased nature of the genetic code table, increase of entropy of amino acid sequences is possible with biased nucleotide sequence. Thus the biased DNA base composition and the extreme rarity of the base doublet CpG of higher organisms are explained. It is expected that the amino acid composition was highly biased at the days of the origin of the genetic code table, and the more frequent amino acids have tended to get rarer, and the rarer ones more frequent. This tendency is observed in the evolution of hemoglobin, cytochrome C, fibrinopeptide, immunoglobulin and lysozyme, and protein as a whole.  相似文献   

8.
When fractionated by reverse-phase high performance liquid chromatography (HPLC), the embryonic hemoglobin of the rainbow trout, Oncorhynchus mykiss, consisted of eight globins different from adult globins in terms of retention time. Amino acid sequences of the N-terminal regions of some globins were determined. In addition, four cDNA clones for embryonic globins from 10-day embryos were isolated (at 15 degrees C), sequenced and the amino acid sequences predicted. In comparison with the sequences of previously characterized globins, they corresponded to two alpha-type and two beta-type globins and therefore were named em.alpha-1, em.alpha-2, em.beta-1 and em.beta-2. The N-terminal 36 amino acids of one (E2) of the embryonic globins isolated by HPLC were identical to those of the sequence deduced from a cDNA, em.beta-2. The phylogenetic relationship between the embryonic globins and other globins previously reported was discussed. The present study is the first demonstration of amino acid sequences of embryonic globins in a teleost. To understand the initiation of erythropoiesis in the early development of the rainbow trout, histochemistry using o-dianisidine/hydrogen peroxide, immunohistochemistry using an antibody against embryonic hemoglobin, and northern blotting and whole embryo in situ hybridization using antisense RNA probe for em.beta-2 were performed. Embryonic globin mRNA, globin and hemoglobin appeared first in the anterior part of the intermediate cell mass (ICM) located in the median line beneath the notochord of embryos 6-7 days after fertilization at 15 degrees C (Vernier's stages 16-20). Shortly after that, the expression signal extended to the posterior part of the ICM and spread out laterally to blood islands on the posterior yolk sac. Thus, the initiation of erythropoiesis in the early embryo of rainbow trout is intraembryonic.  相似文献   

9.
Summary We have isolated and sequenced a portion of the gene encoding the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II from three mammals. These mammalian sequences include one rodent and two primate CTDs. Comparisons of the new sequences to mouse and Chinese hamster show a high degree of conservation among the mammalian CTDs. Due to synonymous codon usage, the nucleotide differences between hamster, rat, ape, and human result in no amino acid changes. The amino acid sequence for the mouse CTD appears to have one different amino acid when compared to the other four sequences. Therefore, except for the one variation in mouse, all of the known mammalian CTDs have identical amino acid sequences. This is in marked contrast to the situation among more divergent species. The present study suggests that there is a strong evolutionary pressure to maintain the primary structure of the mammalian CTD. Offprint requests to: J.L. Corden  相似文献   

10.
The primary structure of the alpha subunit of elongation factor 1 (EF-1 alpha) from human MOLT 4 cells was determined by cDNA sequencing. The data show that the conservation of the amino acid sequence is more than 80% when compared with yeast and Artemia EF-1 alpha. An inventory of amino acid sequences around the guanine-nucleotide-binding site in elongation factor Tu from Escherichia coli and homologous amino acid sequences in G proteins, initiation and elongation factors and proteins from the RAS family shows two regions containing conserved sequence elements. Region I has the sequence apolar-Xaa-Xaa-Xaa-Gly-Xaa-Xaa-Yaa-Xaa-Gly-LYs-Thr(Ser)- -Xaa-Xaa-Xaa-Xaa-X-apolar. Except for RAS proteins, Yaa is always an acidic amino acid residue. Region II is characterized by the invariant sequence apolar-apolar-Xaa-Xaa-Asn-Lys-Xaa-Asp. In order to facilitate sequence comparison we have used a graphic display, which is based on the hydrophilicity values of individual amino acids in a sequence.  相似文献   

11.
A combination of split-field drift tube/mass spectrometry and isotopic labeling techniques is evaluated as a means of identifying single amino acid polymorphisms (SAAPs) in proteins. The method is demonstrated using cytochromec (equine and bovine) and hemoglobin (bovine and sheep). For these studies, proteins from different species are digested with trypsin, and the peptides are labeled at primary amine groups [using either a light (H(3))- or heavy (D(3))-isotopic reagent]. SAAP analysis is carried out by mixing the light-labeled peptides of one species with the heavy-labeled peptides of the other and electrospraying the resulting mixture into a split-field drift tube/mass spectrometer. Peptides having the same sequence in both species appear as doublets in the mass spectrum [shifted in mass-to-charge (m/z) according to the number of incorporated labels]; additionally, these species have identical mobility distributions. Peptides having sequences that differ by one amino acid appear as peaks in the mass spectrum that are shifted in m/z according to the mass difference associated with the SAAP and the number of incorporated labels. The ion mobility distributions for these peptides (differing by only a single amino acid) can often be rationalized by their expected similarities or differences providing additional evidence that they are related. In all, 12 and 26 peptide variants (between species) corresponding to 5 and 11 amino acid polymorphisms have been identified for the cytochrome c and hemoglobin protein samples, respectively.  相似文献   

12.
The globin derived from the monomer Component IV hemoglobin of the marine annelid,Glycera dibranchiata, has been completely sequenced, and the resulting information has been used to create a structural model of the protein. The most important result is that the consensus sequence of Component IV differs by 3 amino acids from a cDNA-predicted amino acid sequence thought earlier to encode the Component IV hemoglobin. This work reveals that the histidine (E7), typical of most heme-containing globins, is replaced by leucine in Component IV. Also significant is that this sequence is not identical to any of the previously reportedGlycera dibranchiata monomer hemoglobin sequences, including the sequence from a previously reported crystal structure, but has high identity to all. A three-dimensional structual model for monomer Component IV hemoglobin was constructed using the published 1.5 å crystal structure of a monomer hemoglobin fromGlycera dibranchiata as a template. The model shows several interesting features: (1) a Phe31 (B10) that is positioned in the active site; (2) a His39 occurs in an interhelical region occupied by Pro in 98.2% of reported globin sequences; and (3) a Met41 is found at a position that emerges from this work as a previously unrecognized heme contact.Abbreviations used GMHX the holo-protein (including b-type heme, Glycera dibranchiata monomer hemoglobin Component X (X=2, 3, or 4) - GMGX the apo-protein, or globin, Glycera dibranchiata monomer globin derived from Component X (X=2, 3, or 4) - rec-gmg the globin derived from a recombinant holoprotein of a Glycera dibranchiata monomer hemoglobin, rec-gmh, whose sequence has been inferred from an isolated cDNA insert - CB label refers to peptides generated from cyanogen bromide cleavage of GMG4 - HPLC high-performance liquid chromatography - T label refers to peptides generated from trypsin digests of GMG4 - Mb myoglobin - MCS monomer hemoglobin crystal structure from Glycera dibranchiata. H, N-terminal sequence of GMG4 - SWMb sperm whale myoglobin  相似文献   

13.
The entropy of the amino acid sequences coded by DNA is considered as a measure of diversity or variety of proteins, and is taken as a measure of evolution. The DNA or m-RNA sequence is corsidered as a stationary second-order Markov chain composed of four kinds of bases. Because of the biased nature of the genetic code table, increase of entropy of amino acid sequences is possible with biased nucleotide sequence. Thus the biased DNA base composition and the extreme rarity of the base doubletC p G of higher organisms are explained. It is expected that the amino acid composition was highly biased at the days of the origin of the genetic code table, and the more frequent amino acids have tended to get rarer, and the rarer ones more frequent. This tendency is observed in the evolution of hemoglobin, cytochrome C, fibrinopeptide, immunoglobulin and lysozyme, and protein as a whole.  相似文献   

14.
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.  相似文献   

15.
16.
The globin derived from the monomer Component IV hemoglobin of the marine annelid,Glycera dibranchiata, has been completely sequenced, and the resulting information has been used to create a structural model of the protein. The most important result is that the consensus sequence of Component IV differs by 3 amino acids from a cDNA-predicted amino acid sequence thought earlier to encode the Component IV hemoglobin. This work reveals that the histidine (E7), typical of most heme-containing globins, is replaced by leucine in Component IV. Also significant is that this sequence is not identical to any of the previously reportedGlycera dibranchiata monomer hemoglobin sequences, including the sequence from a previously reported crystal structure, but has high identity to all. A three-dimensional structual model for monomer Component IV hemoglobin was constructed using the published 1.5 å crystal structure of a monomer hemoglobin fromGlycera dibranchiata as a template. The model shows several interesting features: (1) a Phe31 (B10) that is positioned in the active site; (2) a His39 occurs in an interhelical region occupied by Pro in 98.2% of reported globin sequences; and (3) a Met41 is found at a position that emerges from this work as a previously unrecognized heme contact.  相似文献   

17.
Summary The evolutionary relation of vertebrate myoglobin and the hemoglobin chains including the agnathan hemoglobin chain is investigated on the basis of a new view of amino acid changes that is developed by canonical discriminant analysis of amino acid residues at individual sites. In contrast to the clear discrimination of amino acid residues between myoglobin, hemoglobin a chain, and hemoglobin chain in warm-blood vertebrates, the three types of globins in the lower class of vertebrates show so much variation that they are not well discriminated. This is seen particularly at the sites that are ascertained in mammals to carry the amino acid residues participating in stabilizing the monomeric structure in myoglobin and the residues forming the subunit contacts in hemoglobin. At these sites, agnathan hemoglobin chains are evaluated to be intermediate between the myoglobin and hemoglobin chains of gnathostomes. The variation in the phylogenetically lower class of globins is also seen in the internal region; there the amino acid residues of myoglobin and hemoglobin chains in the phylogenetically higher class exhibit an example of parallel evolution at the molecular level. New quantities, the distance of sequence property between discriminated groups and the variation within each group, are derived from the values of discriminant functions along the peptide chain, and this set of quantities simply describes an overall feature of globins such that the distinction between the three types of globins has been clearer as the vertebrates have evolved to become jawed, landed, and warm-blooded. This result strongly suggests that the functional constraint on the amino acid sequence of a protein is changed by living conditions and that severe conditions constitute a driving force that creates a distinctive protein from a less-constrained protein.Offprint requests to: J. Otsuka  相似文献   

18.
We determined the complete amino acid sequences of the hemoglobin of two species, guinea fowl and California quail, in Galliformes from intact globin chain and chemical cleavage fragments in order to analyze the molecular evolution of hemoglobin for the classification of Galliformes. Galliformes have two types of hemoglobin components, HbA and HbD, which consist of identical chain and different chains. The sequences are similar to globin chains of Galliformes reported previously. These sequences were compared with those of other Galliformes (Phasianidae, Meleagrididae) using duck and goshawk as out-groups. The phylogenetic tree of major groups of Galliformes based on hemoglobin was similar to the tree model produced based on the amino acid sequence of lysozyme c.  相似文献   

19.
The extracellular hemoglobin (Hb) of the earthworm, Lumbricus terrestris, has four major kinds of globin chains: a, b, c, and d, present in equimolar proportions, and additional non-heme, non-globin scaffolding chains called linkers that are required for the calcium-dependent assembly of the full-sized molecule. The amino acid sequences of all four of the globin chains and one of the linkers (L1) have previously been determined. The amino acid sequences via cDNA of each of the three remaining linkers, L2, L3, and L4, have been determined so that the sequences of all constituent polypeptides of the hemoglobin are now known. Each linker has a highly conserved cysteine-rich segment of approximately 40 residues that is homologous with the seven ligand-binding repeats of the human low-density lipoprotein receptor (LDLR). Analysis of linker L1 shows that the connectivity of the three disulfide bonds is exactly the same as in the LDLR ligand-binding repeats. The presence of a calcium-binding site comprising one glutamyl and three aspartyl residues in both the LDLR repeats and in the linkers supports the suggestion that calcium is required for the folding and disulfide connectivity of the linkers as in the LDLR repeats. Linker L2 is markedly heterogeneous and contains unusual glycine-rich sequences near the NH2-terminus and a polar zipper-like sequence with imperfect repeats of Asp-Asp-His at the carboxyl terminus. Similar Asp-Asp-His repeats have been found in a protein homologous to superoxide dismutase in the hemolymph of certain mussels. These repeats may function as metal-binding sites.  相似文献   

20.
A new D-type retrovirus originally designated SAIDS-D/Washington and here referred to as retrovirus-D/Washington (R-D/W) was recently isolated at the University of Washington Primate Center, Seattle, Wash., from a rhesus monkey with an acquired immunodeficiency syndrome and retroperitoneal fibromatosis. To better establish the relationship of this new D-type virus to the prototype D-type virus, Mason-Pfizer monkey virus (MPMV), we have purified and compared six structural proteins from each virus. The proteins purified from each D-type retrovirus include p4, p10, p12, p14, p27, and a phosphoprotein designated pp18 for MPMV and pp20 for R-D/W. Amino acid analysis and N-terminal amino acid sequence analysis show that the p4, p12, p14, and p27 proteins of R-D/W are distinct from the homologous proteins of MPMV but that these proteins from the two different viruses share a high degree of amino acid sequence homology. The p10 proteins from the two viruses have similar amino acid compositions, and both are blocked to N-terminal Edman degradation. The phosphoproteins from the two viruses each contain phosphoserine but are different from each other in amino acid composition, molecular weight, and N-terminal amino acid sequence. The data thus show that each of the R-D/W proteins examined is distinguishable from its MPMV homolog and that a major difference between these two D-type retroviruses is found in the viral phosphoproteins. The N-terminal amino acid sequences of D-type retroviral proteins were used to search for sequence homologies between D-type and other retroviral amino acid sequences. An unexpected amino acid sequence homology was found between R-D/W pp20 (a gag protein) and a 28-residue segment of the env precursor polyprotein of Rous sarcoma virus. The N-terminal amino acid sequences of the D-type major gag protein (p27) and the nucleic acid-binding protein (p14) show only limited amino acid sequence homology to functionally homologous proteins of C-type retroviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号