首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu  Jiali  Li  Yue  Gao  Ning  Ji  Jing  He  Qian 《Journal of physiology and biochemistry》2022,78(1):199-211
Journal of Physiology and Biochemistry - Calcium/calmodulin-dependent protein kinase IV (CaMKIV) has recently emerged as an important regulator of glucose metabolism and vascular function, but the...  相似文献   

2.
3.
Calcium/calmodulin (CaM) dependent protein kinase I (CaM-KI) is a member of a well-defined multi-functional CaM-K family, but its physiological and developmental functions have yet to be determined. Here, we have cloned two cDNAs encoding CaM-KI from a Xenopus laevis (X. laevis) oocyte cDNA library. One is a novel isoform of CaM-KI, named CaM-KI LiKbeta (XCaM-KI LiKbeta). The other is an alpha isoform of CaM-KI (XCaM-KIalpha), which is a highly related to previously cloned mammalian isoform. XCaM-KIalpha was constantly expressed through embryogenesis, whereas XCaM-KI LiKbeta expression dramatically increased in the neurula stage. Both XCaM-KI isoforms exhibited kinase activity in a Ca(2+)/CaM-dependent manner. Overexpression of a constitutively active mutant of CaM-KI isoforms inhibited cell cleavage in X. laevis embryos and caused a marked change of cell morphology in Hela cells. Taken together, these results suggest that CaM-KI plays a role in cell-structure regulation during early embryonic development.  相似文献   

4.
A prominent role for calcium/calmodulin-dependent protein kinase II (CaMKII) in regulation of excitatory synaptic transmission was proposed two decades ago when it was identified as a major postsynaptic density protein. Since then, fascinating mechanisms optimized to fine-tune the magnitude and locations of CaMKII activity have been revealed. The importance of CaMKII activity and autophosphorylation to synaptic plasticity in vitro, and to a variety of learning and memory paradigms in vivo has been demonstrated. Recent progress brings us closer to understanding the regulation of dendritic CaMKII activity, localization, and expression, and its role in modulating synaptic transmission and cell morphology.  相似文献   

5.
Phosphorylation of CREB (cyclic AMP [cAMP]- response element [CRE]-binding protein) by cAMP-dependent protein kinase (PKA) leads to the activation of many promoters containing CREs. In neurons and other cell types, CREB phosphorylation and activation of CRE-containing promoters can occur in response to elevated intracellular Ca2+. In cultured cells that normally lack this Ca2+ responsiveness, we confer Ca(2+)-mediated activation of a CRE-containing promoter by introducing an expression vector for Ca2+/calmodulin-dependent protein kinase type IV (CaMKIV). Activation could also be mediated directly by a constitutively active form of CaMKIV which is Ca2+ independent. The CaMKIV-mediated gene induction requires the activity of CREB/ATF family members but is independent of PKA activity. In contrast, transient expression of either a constitutively active or wild-type Ca2+/calmodulin-dependent protein kinase type II (CaMKII) fails to mediate the transactivation of the same CRE-containing reporter gene. Examination of the subcellular distribution of transiently expressed CaMKIV and CaMKII reveals that only CaMKIV enters the nucleus. Our results demonstrate that CaMKIV, which is expressed in neuronal, reproductive, and lymphoid tissues, may act as a mediator of Ca(2+)-dependent gene induction.  相似文献   

6.
7.
Calcium/calmodulin-dependent kinase kinase 2 (CaMKK2) plays a key role in regulating food intake and energy expenditure at least in part by its actions in hypothalamic neurons. Previously, we showed that loss of CaMKK2 protected mice from high-fat diet (HFD)-induced obesity and glucose intolerance. However, although pair feeding HFD to WT mice to match food consumption of CAMKK2-null mice slowed weight gain, it failed to protect from glucose intolerance. Here we show that relative to WT mice, HFD-fed CaMKK2-null mice are protected from inflammation in adipose and remain glucose-tolerant. Moreover, loss of CaMKK2 also protected mice from endotoxin shock and fulminant hepatitis. We explored the expression of CaMKK2 in immune cells and found it to be restricted to those of the monocyte/macrophage lineage. CaMKK2-null macrophages exhibited a remarkable deficiency to spread, phagocytose bacteria, and synthesize cytokines in response to the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS). Mechanistically, loss of CaMKK2 uncoupled the TLR4 cascade from activation of protein tyrosine kinase 2 (PYK2; also known as PTK2B). Our findings uncover an important function for CaMKK2 in mediating mechanisms that control the amplitude of macrophage inflammatory responses to excess nutrients or pathogen derivatives.  相似文献   

8.
We demonstrate here that neuronal nitric-oxide synthase (nNOS) is phosphorylated and inhibited by a constitutively active form of Ca2+/calmodulin (CaM)-dependent protein kinase I (CaM-K I1-293). Substitution of Ser741 to Ala in nNOS blocked the phosphorylation and the inhibitory effect. Mimicking phosphorylation at Ser741 by Ser to Asp mutation resulted in decreased binding of and activation by CaM, since the mutation was within the CaM-binding domain. CaM-K I1-293 gave phosphorylation of nNOS at Ser741 in transfected cells, resulting in 60–70% inhibition of nNOS activity. Wild-type CaM-K I also did phosphorylate nNOS at Ser741 in transfected cells, but either CaM-K II or CaM-K IV did not. These results raise the possibility of a novel cross-talk between nNOS and CaM-K I through the phosphorylation of Ser741 on nNOS.  相似文献   

9.
Numerous studies over the past decade have established a role(s) for protein phosphorylation in modulation of synaptic efficiency. This article reviews this data and focuses on putative functions of Ca2+/calmodulin-dependent protein kinase II (CaM-kinase II) which is highly concentrated at these synapses which utilize glutamate as the neurotransmitter. Evidence is presented that CaM-kinase II can phosphorylate these glutamate receptor/ion channels and enhance the ion current flowing through them. This may contribute to mechanisms of synaptic plasticity that are important in cellular paradigms of learning and memory such as long-term potentiation in the hippocampus.  相似文献   

10.
Synapse-associated protein 97 (SAP97) has been involved in the correct delivery and clustering of glutamate ionotropic receptors to the postsynaptic compartment. Here we demonstrate that synaptic trafficking of SAP97 itself was modulated by calcium/calmodulin-dependent protein kinase II (CaMKII) in cultured hippocampal neurons. CaMKII activation led to increased targeting of SAP97 into dendritic spines, whereas CaMKII inhibition was responsible for SAP97 high colocalization in the cell soma with the endoplasmic reticulum protein disulfide-isomerase. No effect was detected for other members of the membrane-associated guanylate kinase protein family, such as SAP102 and PSD-95. Transfection of activated alphaCaMKII T286D dramatically increased concentration of both endogenous and transfected SAP97 at postsynaptic terminals. In vitro CaMKII phosphorylation of the SAP97 N-terminal fusion protein and metabolic labeling of transfected COS7 cells indicated SAP97-Ser-39 as a CaMKII phosphosite in the SAP97 protein sequence. Moreover, transfection in hippocampal neurons of SAP97 mutants that blocked or mimicked Ser-39 phosphorylation had effects similar to those observed upon inhibiting or constitutively activating CaMKII. Further, CaMKII-dependent SAP97-Ser-39 phosphorylation determined a redistribution of the glutamate receptor subunit (GluR1) of the AMPA receptor. In conclusion, our data show that CaMKII-dependent SAP97-Ser-39 phosphorylation regulates the association of SAP97 with the postsynaptic complex, thus providing a fine molecular mechanism responsible for the synaptic delivery of SAP97 interacting proteins, i.e. ionotropic glutamate receptor subunits.  相似文献   

11.
Calmodulin-dependent protein kinase IV (CaM-kinase IV), a neuronal calmodulin-dependent multifunctional protein kinase, undergoes autophosphorylation in response to Ca2+ and calmodulin, resulting in activation of the enzyme (Frangakis et al. (1991) J. Biol. Chem. 266, 11309-11316). In contrast, the enzyme was phosphorylated by cAMP-dependent protein kinase, leading to a decrease in the enzyme activity. Thus, the results suggest differential regulation of CaM-kinase IV by two representative second messengers, Ca2+ and cAMP.  相似文献   

12.
Although Ca2+/calmodulin-dependent (CaM) protein kinase II isoforms are present in the nervous system in high amounts, many aspects of in vivo expression, localization, and function remain unexplored. During development, CaM kinase IIα and IIβ are differentially expressed. Here, we examined CaM kinase II isoforms in Sprague-Dawley rat sciatic motor neurons before and after axotomy. We cut the L4-5 spinal nerves unilaterally and exposed the proximal nerve stumps to a fluoroprobe, to retrogradely label the neurons of origin. Anti-CaM kinase IIβ antibody showed immunoreactivity in motor neurons, which decreased to low levels by 4 days after axotomy. We found a similar response by in situ hybridization with riboprobes. The decrease in expression of mRNA and protein was confined to fluorescent motor neurons. For CaM kinase IIα, in situ hybridization showed that the mRNA was in sciatic motor neurons, with a density unaffected by axotomy. However, these neurons were also enlarged, suggesting an up-regulation of expression. Northern blots confirmed an mRNA increase. We were unable to find CaM kinase IIα immunoreactivity before or after axotomy in sciatic motor neuron cell bodies, suggesting that CaM kinase IIα is in the axons or dendrites, or otherwise unavailable to the antibody. Using rats with crush lesions, we radiolabeled axonal proteins being synthesized in the cell body and used two-dimensional polyacrylamide gel electrophoresis with Western blots to identify CaM kinase IIα as a component of slow axonal transport. This differential regulation and expression of kinase isoforms suggests separate and unique intracellular roles. Because we find CaM kinase IIβ down-regulates during axonal regrowth, its role in these neurons may be related to synaptic transmission. CaM kinase IIα appears to support axonal regrowth. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 796–810, 1997  相似文献   

13.
Sevoflurane (SEV) preconditioning plays a protective effect against liver ischemia reperfusion (IR) injury, while the role of autophagy in SEV-mediated hepatoprotection and the precise mechanism is unclear. In the current study, mice were pretreated with SEV or autophagy inhibitor before liver IR injury. In vitro, primary rat hepatocytes were pretreated with SEV and then exposed to hypoxia/reoxygenation (H/R). Liver function was measured by biochemical and histopathological examinations, and markers associated with inflammation, oxidation, apoptosis and autophagy were subsequently measured. We found that SEV preconditioning dramatically reduced hepatic damage, alleviated cell inflammatory response, oxidative stress and apoptosis in mice suffering hepatic IR injury, whereas these protective effects were abolished by the autophagy inhibitor 3-MA. In addition, pretreatment with SEV markedly activated HGF/Met signaling pathway regulation. Besides, pretreatment with an hepatocyte growth factor (HGF) inhibitor or knocking down HGF expression significantly downregulated phosphorylated met (p-met) and autophagy levels, and abolished the protective effects of SEV against hepatic IR or hepatocyte H/R injury. Conversely, HGF overexpression efficiently increased the p-met and autophagy levels and strengthened the protective effects of SEV. These results indicated that sevoflurane preconditioning ameliorates hepatic IR injury by activating HGF/Met-mediated autophagy.  相似文献   

14.
15.
Hepatic ischemia/reperfusion injury (IRI) is tissue damage resulting from return of the blood supply to the tissue after a period of ischemia or lack of oxygen. Much of the morbidity associated with liver transplantation and major hepatic resections is, in part, due to IRI. Both innate immunity and autophagy play important roles in hepatic IRI. With regard to innate immunity, one factor that plays a key role is NOD1, an intracellular pattern recognition receptor. NOD1 has recently been shown to be associated with autophagy, but the mechanisms involved with this process remain obscure. This relationship between NOD1 and autophagy prompted us to examine the role and potential mechanisms of NOD1 in regulating autophagy as related to hepatic IRI. We found that NOD1 was upregulated during hepatic IRI and was associated with an activation of the autophagic signaling pathway. Moreover, levels of Atg5, a critical protein associated with autophagy, were decreased when NOD1 was inhibited by NOD1 small interfering RNA. We conclude that NOD1 appears to exert a pivotal role in hepatic IRI by activating autophagy to aggravate hepatic IRI, and Atg5 was required for this process. The identification of this novel pathway, that links expression levels of NOD1 with Atg5-mediated autophagy, may provide new insights for the generation of novel protective therapies directed against hepatic IRI.  相似文献   

16.
17.
18.
There is accumulating evidence that Ca2+-dependent signaling pathways regulate proliferation and migration of vascular smooth muscle (VSM) cells, contributing to the intimal accumulation of VSM that is a hallmark of many vascular diseases. In this study we investigated the role of the multifunctional serine/threonine kinase, calmodulin (CaM)-dependent protein kinase II (CaMKII), as a mediator of Ca2+ signals regulating VSM cell proliferation. Differentiated VSM cells acutely isolated from rat aortic media express primarily CaMKII gene products, whereas passaged primary cultures of de-differentiated VSM cells express primarily CaMKII2, a splice variant of the gene. Experiments examining the time course of CaMKII isoform modulation revealed the process was rapid in onset following initial dispersion and primary culture of aortic VSM with a significant increase in CaMKII2 protein and a significant decrease in CaMKII protein within 30 h, coinciding with the onset of DNA synthesis and cell proliferation. Attenuating the initial upregulation of CaMKII2 in primary cultured cells using small-interfering RNA (siRNA) resulted in decreased serum-stimulated DNA synthesis and cell proliferation in primary culture. In passaged VSM cells, suppression of CaMKII2 activity by overexpression of a kinase-negative mutant, or suppression of endogenous CaMKII content using multiple siRNAs, significantly attenuated serum-stimulated DNA synthesis and cell proliferation. Cell cycle analysis following either inhibitory approach indicated decreased proportion of cells in G1, an increase in proportion of cells in G2/M, and an increase in polyploidy, corresponding with accumulation of multinucleated cells. These results indicate that CaMKII2 is specifically induced during modulation of VSM cells to the synthetic phenotypic and is a positive regulator of serum-stimulated proliferation. calmodulin kinase II; phenotype modulation  相似文献   

19.
Modulation of neuronal excitability is believed to be an important mechanism of plasticity in the nervous system. Calcium/calmodulin-dependent protein kinase II (CaMKII) has been postulated to regulate the ether à go-go (eag) potassium channel in Drosophila. Inhibition of CaMKII and mutation of the eag gene both cause hyperexcitability at the larval neuromuscular junction (NMJ) and memory formation defects in the adult. In this study, we identify a single site, threonine 787, as the major CaMKII phosphorylation site in Eag. This site can be phosphorylated by CaMKII both in a heterologous cell system and in vivo at the larval NMJ. Expression of Eag in Xenopus oocytes was used to assess the function of phosphorylation. Injection of either a specific CaMKII inhibitor peptide or lavendustin C, another CaMKII inhibitor, reduced Eag current amplitude acutely. Mutation of threonine 787 to alanine also reduced amplitude. Moreover, both CaMKII inhibition and the alanine mutation accelerated inactivation. The reduction in current amplitudes and the accelerated inactivation of dephosphorylated Eag channels would result in decreased outward potassium currents and hyperexcitability at presynaptic terminals and, thus, are consistent with the NMJ phenotype observed when CaMKII is inhibited. These results show that Eag is a substrate of CaMKII and suggest that direct modulation of potassium channels may be an important function of this kinase.  相似文献   

20.
Calmodulin-dependent protein kinase IV (CaM-kinase IV) phosphorylated calmodulin (CaM), which is its own activator, in a poly-L-Lys [poly(Lys)]-dependent manner. Although CaM-kinase II weakly phosphorylated CaM under the same conditions, CaM-kinase I, CaM-kinase kinase alpha, and cAMP-dependent protein kinase did not phosphorylate CaM. Polycations such as poly(Lys) were required for the phosphorylation. The optimum concentration of poly(Lys) for the phosphorylation of 1 microM CaM was about 10 microg/ml, but poly(Lys) strongly inhibited CaM-kinase IV activity toward syntide-2 at this concentration, suggesting that the phosphorylation of CaM is not due to simple activation of the catalytic activity. Poly-L-Arg could partially substitute for poly(Lys), but protamine, spermine, and poly-L-Glu/Lys/Tyr (6/3/1) could not. When phosphorylation was carried out in the presence of poly(Lys) having various molecular weights, poly(Lys) with a higher molecular weight resulted in a higher degree of phosphorylation. Binding experiments using fluorescence polarization suggested that poly(Lys) mediates interaction between the CaM-kinase IV/CaM complex and another CaM. The 32P-labeled CaM was digested with BrCN and Achromobacter protease I, and the resulting peptides were purified by reversed-phase HPLC. Automated Edman sequence analysis of the peptides, together with phosphoamino acid analysis, indicated that the major phosphorylation site was Thr44. Activation of CaM-kinase II by the phosphorylated CaM was significantly lower than that by the nonphosphorylated CaM. Thus, CaM-kinase IV activated by binding Ca2+/CaM can bind and phosphorylate another CaM with the aid of poly(Lys), leading to a decrease in the activity of CaM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号