首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. The reactive analogue oADP produced by periodate oxidation of ADP has been studied as a potential affinity label for the enzyme bovine glutamate dehydrogenase, using circular dichroism (CD) difference spectroscopy to monitor specific binding. 2. The analogue binds stoichiometrically, rapidly and reversibly to the adenine nucleotide binding site with Kd approximately equal to 12 microM (20 degrees C, pH 7) with characteristic intensification of the adenine nucleotide CD at 260 nm. 3. This complex is unstable and decays with a half-life of about 1.5 h; the analogue then becomes attached as a Schiff base to a number of subsidiary sites, including the enzyme active site, with partial inactivation of the enzyme. 4. Depending upon initial concentration of oADP, the enzyme activity is progressively lost during the slow reaction; following borohydride reduction, up to four molecules of analogue are bound/subunit. 5. Protection against loss of enzyme activity is afforded by the coenzyme NAD+ plus glutarate or L-hydroxyglutarate (an effective inhibitor), or by glutarate alone, but not by NAD+ alone. 6. Spectroscopic and protection studies indicate that after the decay of the specific CD signal, the enzyme retains the capacity to bind ADP, but that this is progressively lost in parallel with decay of enzymic activity. 7. The results are consistent with proximity or functional interaction between the adenine nucleotide site and the coenzyme binding portion of the active site. 8. Thus oADP does not act as a true affinity label for the adenine nucleotide binding site, but the reaction subsequent to binding at that site shows some specificity directed towards the active site.  相似文献   

2.
3.
Bovine liver glutamate dehydrogenase has been studied by analytical affinity chromatography on two immobilized AMP analogs, i.e., N6-(6-aminohexyl)-AMP and 8-(6-aminohexyl)-amino-AMP. The existence of various enzyme-coenzyme and enzyme-effector complexes has been verified. Also the cooperative formation of two ternary complexes, i.e., glutamic dehydrogenase (GHD)-NADP-glutamate and GDH-ADP-leucine, has been shown. The results of this study have been rationalized by the “ligand exclusion theory.” which has been proposed for the regulation of the glutamic dehydrogenase. It has been shown that the active site and the ADP-binding effector site are oriented close to each other on the enzyme. Furthermore, the data suggest that the adenylic site is not identical to the nonactive coenzyme binding site. A mechanism based on electrostatic interactions is suggested for the cooperative binding of oxidized coenzyme and substrate. Dissociation constants for complexes between the enzyme and two coenzyme fragments (P-ADPR and 2′,5′-ADP) have been estimated.  相似文献   

4.
Heat denaturation of bovine liver glutamate dehydrogenase occurred at 47 degrees with loss of enzyme activity and formation of inactive, insoluble protein. Fractional loss of catalytic activity coincided with alteration in protein fluorescence and solubility for a corresponding percentage of protein molecules. Operationally, at 50% denaturation, one-half of the total population of enzyme molecules is fully active catalytically and soluble and the other half of the protein molecule population is completely inactive catalytically and insoluble.  相似文献   

5.
1. Initial rates of oxidative deamination of L-glutamate with NAD+ as coenzyme, and of reductive aminiation of 2-oxoglutarate with NADH as coenzyme, catalysed by bovine liver glutamate dehydrogenase were measured in 0.111 M-sodium phosphate buffer, pH 7, at 25 degrees C, in the absence and presence of product inhibitors. All 12 possible combinations of variable substrate and product inhibitor were used. 2. Strict competition was observed between NAD+ and NADH, and between glutamate and 2-oxoglutarate. All other inhibition patterns were clearly non-competitive, except for inhibition by NH4+ with NAD+ as variable substrate. Here the extrapolation did not permit a clear distinction between competitive and non-competitive inhibition. 3. Mutually non-competitive behaviour between glutamate and NH4+ indicates that these substrates can be bound at the active site simultaneously. 4. Primary Lineweaver-Burk plots and derived secondary plots of slopes and intercepts against inhibitor concentration were linear, with one exception: with 2-oxoglutarate as variable substrate, the replot of primary intercepts against inhibitory NAD+ concentration was curved. 5. Separate Ki values were evaluated for the effect of each product inhibitor on the individual terms in the reciprocal initial-rate equations. With this information it is possible to calculate rates for any combination of substrate concentrations within the experimental range with any concentration of a single product inhibitor. 6. The inhibition patterns are consistent with neither a simple compulsory-order mechanism nor a rapid-equilibrium random-order mechanism without modification. They can, however, be reconciled with either type of mechanism by postulating appropirate abortive complexes. Of the two compulsory sequences that have been proposed, one, that in which the order of binding is NADH, NH4+, 2-oxoglutarate, requires an implausible pattern of abortive complex-formation to account for the results. 7. On the basis of a rapid-equilibrium random-order mechanism, dissociation constants can be calculated from the Ki values. Where these can be compared with independent estimates from the kinetics of the uninhibited reaction or from direct measurements of substrate binding, the agreement is reasonable good. On balance, therefore, the results provide further support for the rapid-equilibrium random-order mechanism under these conditions.  相似文献   

6.
Rat heart cells and mitochondria were incubated with supernatants from eosinophils or neutrophils that had been stimulated with zymosan-C3b. Supernatants from eosinophils, but not neutrophils, were toxic to rat heart cells in a dose-dependent manner. This was associated with an increased O2 uptake, which was blocked by either 1 mM-cyanide or 100 microM-ouabain. Supernatants from eosinophils, but not neutrophils, caused a decrease in O2 uptake by rat heart mitochondria utilizing pyruvate (+ malate) but not other substrates. The activity of pyruvate dehydrogenase (EC 1.2.4.1) from rat heart was inhibited by Ca2+-free eosinophil supernatants. The activity of oxoglutarate dehydrogenase (EC 1.2.4.2) was also inhibited but not that of lipoamide dehydrogenase (EC 1.6.4.3). Prior incubation with heparin prevented these effects of eosinophil supernatants on heart cells, suggesting that they were caused by eosinophil cationic proteins. Other cationic proteins, including poly-L-lysine and poly-L-arginine were also toxic to rat heart cells, but these reduced O2 uptake. It was concluded that granulocyte secretion products containing eosinophil cationic proteins are toxic to isolated rat heart cells in vitro. This may be due to an initial increase in membrane permeability, which may lead to activation of (Na+ + K+)-dependent ATPase and increased O2 uptake. A second step may involve inhibition of pyruvate dehydrogenase by the same products, leading to a decreased O2 uptake. It is suggested that these mechanisms could contribute to the development of cardiac injury and myocardial disease in clinical situations where many degranulated eosinophils are present.  相似文献   

7.
A total of 26 different purine nucleotides with specific modifications in the base moiety and/or in the polyphosphate chain as well as various combinations of nucleotides were tested as allosteric effectors of beef liver glutamate dehydrogenase (L-glutamate : NAD(P)+ oxidoreductase (deaminating), EC 1.4.1.3). The capacity of these nucleotide analogs to activate or to inhibit the glutamate dehydrogenase activity is expressed quantitatively and scaled between the extreme effects of ADP and GTP, respectively. The significance of distinct structural elements for the enzyme-effector interaction is discussed. While the inhibitory GTP site is less specific, accepting many natural and most modified nucleoside triphosphates as inhibitors, the activating ADP site shows a much higher specificity for nucleotides as activators.  相似文献   

8.
Formation of the binary complex between the reduced coenzyme nicotinamide adenine dinucleotide (NADH) and pig skeletal muscle lactate dehydrogenase (LDH, EC 1.1.1.27) has been investigated by calorimetric and equilibrium dialysis techniques in 0.2 M potassium phosphate buffer (pH 7.0) at various temperatures. Analysis of thermal titration curves at two temperatures (25 and 31.5 degrees) shows that the experimental enthalpy data can be rationalized assuming four independent and equivalent binding sites for the tetrameric enzyme. Binary complex formation is characterized by a negative temperature coefficient, delta cp, of the binding enthalpy, which amounts to -1300 plus or minus 53 cal/(deg mol of LDH) in the temperature range of 5-31.5 degrees. Despite the slightly smaller standard deviation resulting when polynomial regression analysis of the second degree is applied to the temperature dependence of the enthalpy values, binding enthalpies seem to be adequately represented in the temperature range studied by the equation delta H = -1.3T + 2.3, kcal/mol of LDH, T referring to the temperature in degrees C. By combination of the results obtained from equilibrium dialysis and calorimetric studies a set of apparent thermodynamic parameters for binding of NADH to LDH in 0.2 M potassium phosphate buffer at pH 7 has been established.  相似文献   

9.
The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.  相似文献   

10.
11.
Very littly discrimination is observed in the binary binding of dicarboxylic acid substrate analogues to glutamate dehydrogenase as monitored by proton nuclear magnetic resonance. Variation in length, charge, bulkiness and conformational rigidity resulted in only a factor of five variation in KD and apparent relaxation time, T2. Upon titration of the binary enzyme-ligand complex with coenzyme to form the ternary enzyme-ligand-coenzyme complex strong discrimination is observed. Coenzyme binds tightly only when the correct substrate is present, otherwise it binds 10 to 150 times more weakly.  相似文献   

12.
Kinetics of pressure-induced denaturation of bovine liver glutamate dehydrogenase (EC 1.4.1.3) were investigated in the pressure range 1.8-2.8 kbar by observing the residual activity after the pressure-release and the scattered light intensity during the incubation at high pressure. The residual activity decreased exponentially with the incubation time, whereas the scattered light intensity showed a bimodal profile indicating parallel aggregation and dissociation reactions. The latter suggested that two kinds of aggregates were formed during the incubation under pressure. The observed first-order rate constant for the inactivation, k obs, showed a minimum around 30 degrees C. These experimental results were interpreted in terms of the following reaction scheme; (formula; see text) where N represents the enzyme entity with native structure, D1 the partially denatured intermediate, D2 the irreversibly denatured state, and A1 and A2 the two kinds of aggregates, one of which (A1) is reversibly formed at an early stage of the incubation under high pressure. The apparent activation volume for the inactivation reaction was estimated to be delta V*app = -113 +/- 5 cm3 X mol-1 from the pressure dependence of k obs. The effect of coenzyme, NAD+, on the pressure-induced inactivation was also studied. The inactivation was retarded by the presence of the coenzyme, whereas the apparent activation volume for the holoenzyme (delta V*app = -104 +/- 2 cm3 X mol-1) did not differ significantly from that for the apoenzyme.  相似文献   

13.
14.
15.
16.
R T Bartlett  H O Spivey 《Enzyme》1978,23(4):257-261
NADH substrate inhibition of bovine liver glutamate dehydrogenase appears to be eliminated at enzyme concentrations above 0.5mg/ml. Since the inhibition cannot be restored by preincubation of the enzyme with any substrate or product combination, the release of inhibition had previously been considered the result of enzyme polymerization. Benzene-saturated solutions, however, increase the extent of enzyme polymerization without affecting the NADH inhibition. These and related control measurements demonstrate that the release of substrate inhibition is the result of a hysteretic transition of an enzyme central and transitory complex.  相似文献   

17.
A new adenosine analog, 3'-p-fluorosulfonyl-benzoyladenosine (3'-FSBA), has been synthesized which reacts covalently with bovine liver glutamate dehydrogenase. Native glutamate dehydrogenase is activated by ADP and inhibited by high concentrations of DPNH. Both of these effects are irreversibly decreased upon incubation of the enzyme with the adenosine analog, 3'-p-fluorosulfonyl-benzoyladenosine (3'-FSBA), while the intrinsic enzymatic activity as measured in the absence of regulatory compounds remains unaltered. A plot of the rate constant for modification as a function of the 3'-FSBA concentration is not linear, suggesting that the adenosine derivative binds to the enzyme (Ki equals 1.0 times 10-4 M) prior to the irreversible modification. Protection against modification by 3'-FSBA is provided by ADP and by high concentrations of DPNH, but not by the inhibitor GTP, the substrate alpha-keto glutarate, the coenzyme TPNH, or low concentrations of the coenzyme DPNH. The isolated altered enzyme contains approximately 1 mol of sulfonylbenzoyladenosine per peptide chain, indicating that a single specific regulatory site has reacted with 3'-tfsba. the modified enzyme exhibits normal Michaelis constants for its substrates and is still inhibited by GTP, albeit at a higher concentration, but it is not inhibited by high concentrations of DPNH. Although ADP does not appreciably activate the modified enzyme, it does (as in the case of the native enzyme) overcome the inhibition of the modified enzyme by GTP. These results suggest that ADP can bind to the modified enzyme, but that its ability to activate is affected indirectly by the modification of the adjacent tdpnh inhibitory site. It is proposed that the regulatory sites for ADP and DPNH are partially overlapping and that 3'FSBA functions as a specific affinity label for the DPNH inhibitory site of glutamate dehydrogenase. It is anticipated that 3'-p-fluorosulfonylbenzolyadenosine may act as an affinity label of other dehydrogenases as well as of other classes of enzymes which use adenine nucleotides as substrates or regulators.  相似文献   

18.
Bovine liver glutamate dehydrogenase (GDH), a hexameric enzyme, undergoes subunit dissociation, denaturation, and inactivation in the presence of guanidine hydrochloride (GdnHCl), depending on the denaturant concentration. The correlation between the enzymatic activity and the molecular state of GDH, and the reconstitution of native hexamer from subunits after the removal of GdnHCl were examined by measuring the enzymatic activity and CD spectrum in the far ultraviolet region. It was found that only the hexameric form of GDH has enzymatic activity, and the reconstitution of the hexamer with full enzymatic activity from the trimeric form which has native polypeptide chain structure can be achieved by the removal of GdnHCl. On the other hand, the recovery of enzymatic activity from the dissociated form in more concentrated GdnHCl solution where unfolding of the polypeptide chain takes place showed an exponential decrease with increasing incubation time in the GdnHCl solution. The time constant for the decay of enzymatic activity with respect to the incubation time was almost the same as that for unfolding of the polypeptide chain (followed by CD spectroscopy). It is suggested on the basis of these experimental results that the failure of reconstitution of GDH hexamer from subunits produced at high denaturant concentration is due to failure in the refolding of the unfolded subunit to the correct three-dimensional structure of the polypeptide chain rather than in the reassociation process from subunits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号