首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
There is a need for biological information to support current stock designations of bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. The existence of many inshore, resident “communities” raises questions as to the relationship these dolphins may hold with dolphins inhabiting neighboring inshore and coastal areas. In this study, population subdivision was examined among four resident, inshore bottlenose dolphin stocks (Sarasota Bay, FL, Tampa Bay, FL, Charlotte Harbor, FL and Matagorda Bay, TX) and one coastal stock (1–12 km offshore) in the Gulf of Mexico. Evidence of significant population structure among all areas was found on the basis of both mitochondrial DNA (mtDNA) control region sequence data and nine nuclear microsatellite loci. Estimates of relatedness showed no population contained a significantly high number of related individuals, while separate AMOVAs for males and females indicated that both sexes exhibit a significant level of site philopatry. Results presented here provide the first genetic evidence of population subdivision between the coastal Gulf of Mexico and adjacent inshore areas along the central west coast of Florida. Such strong genetic subdivision is surprising given the short geographical distance between many of these areas and the lack of obvious geographic barriers to prevent gene flow. These findings support the current, separate identification of stocks for bottlenose dolphins inhabiting the eastern coastal and inshore areas of the Gulf of Mexico.  相似文献   

2.
The cosmopolitan reed grass Phragmites australis (Poaceae) is an intensively studied species globally with a substantial focus in the last two decades on its invasive populations. Here we argue that P. australis meets the criteria to serve as a model organism for studying plant invasions. First, as a dominant species in globally important wetland habitats, it has generated significant pre-existing research, demonstrating a high potential for funding. Second, this plant is easy to grow and use in experiments. Third, it grows abundantly in a wide range of ecological systems and plant communities, allowing a broad range of research questions to be addressed. We formalize the designation of P. australis as a model organism for plant invasions in order to encourage and standardize collaborative research on multiple spatial scales that will help to integrate studies on the ecology and evolution of P. australis invasive populations, their response to global environmental change, and implications for biological security. Such an integrative framework can serve as guidance for studying invasive plant species at the population level and global spatial scale.  相似文献   

3.
Historical events such as colonisation, spatial distribution across different habitats, and contemporary processes, such as human-mediated habitat fragmentation can leave lasting imprints on the population genetics of a species. Orchids currently comprise 17% of threatened flora species in Australia (Environment Protection and Biodiversity Conservation Act 1999) due to the combination of fragmentation and illegal harvesting (Benwell in Recovery plan, swamp orchids Phaius australis, Phaius tancarvilliae, NSW National Parks and Wildlife Service, Sydney, 1994; Jones in A complete guide to native orchids of Australia including the island territories, 2nd edn, Reed Natural History, Sydney, 2006; DE in Phaius australis in species profile and threats database, Department of the Environment. http://www.environment.gov.au/sprat, 2015). The federally endangered Swamp Orchid Phaius australis has a disjunct distribution across an almost 2000 km latitudinal range along Australia’s east coast but it was estimated that 95% of the populations have been lost since European settlement (Benwell 1994). Phaius australis is endangered due to illegal collection and habitat loss that has resulted in limited connectivity between populations, in ecosystems that are vulnerable to climate change. Thus the genetic impacts of its history combined with more recent fragmentation may have impacts on its future viability especially in light of changing environmental conditions. Thirty-four populations were sampled from tropical north Queensland to the southern edge of the subtropics in New South Wales. Population genetics analysis was conducted using 13 polymorphic microsatellite markers developed for the species using NextGen sequencing. Spatial genetic patterns indicate post-colonisation divergence from the tropics southwards to its current climate niche limits. Genetic diversity is low across all populations (A?=?1.5, H e  = 0.171), and there is little evidence of genetic differentiation between regions. Consistent with population genetic theory, the historic loss of populations has resulted in significantly lower genetic diversity in small populations compared to large (P, A, He; p?<?0.05). The viability and persistence of P. australis populations now and in a changing climate are discussed in the context of conservation priorities.  相似文献   

4.
For highly mobile species that nevertheless show fine-scale patterns of population genetic structure, the relevant evolutionary mechanisms determining structure remain poorly understood. The bottlenose dolphin (Tursiops truncatus) is one such species, exhibiting complex patterns of genetic structure associated with local habitat dependence in various geographic regions. Here we studied bottlenose dolphin populations in the Gulf of California and Pacific Ocean off Baja California where habitat is highly structured to test associations between ecology, habitat dependence and genetic differentiation. We investigated population structure at a fine geographic scale using both stable isotope analysis (to assess feeding ecology) and molecular genetic markers (to assess population structure). Our results show that there are at least two factors affecting population structure for both genetics and feeding ecology (as indicated by stable isotope profiles). On the one hand there is a signal for the differentiation of individuals by ecotype, one foraging more offshore than the other. At the same time, there is differentiation between the Gulf of California and the west coast of Baja California, meaning that for example, nearshore ecotypes were both genetically and isotopically differentiated either side of the peninsula. We discuss these data in the context of similar studies showing fine-scale population structure for delphinid species in coastal waters, and consider possible evolutionary mechanisms.  相似文献   

5.
Irrespective of its causes, strong population genetic structure indicates a lack of gene flow. Understanding the processes that underlie such structure, and the spatial patterns it causes, is valuable for conservation efforts such as restoration. On the other hand, when a species is invasive outside its native range, such information can aid management in the non-native range. Here we explored the genetic characteristics of the Australian tree Acacia dealbata in its native range. Two subspecies of A. dealbata have previously been described based on morphology and environmental requirements, but recent phylogeographic data raised questions regarding the validity of this taxonomic subdivision. The species has been widely planted within and outside its native Australian range and is also a highly successful invasive species in many parts of the world. We employed microsatellite markers to investigate the population genetic diversity and structure among 42 A. dealbata populations from across the species’ native range. We also tested whether environmental variables purportedly relevant for the putative separation of subspecies are linked with population genetic differentiation. We found no relationship between population genetic structure of A. dealbata in Australia and these environmental features. Rather, we identified two geographically distinct genetic clusters that corresponded with populations in the northeastern part of mainland Australia, and the southern mainland and Tasmanian range of the species. Our results do not support the taxonomic subdivision of the species into two distinct subspecies based on environmental features. We therefore assume that the observed morphological differences between the putative subspecies are plastic phenotypic responses. This study provides population genetic information that will be useful for the conservation of the species within Australia as well as to better understand the invasion dynamics of A. dealbata.  相似文献   

6.
Traditionally viewed as an Andean grain crop,Chenopodium quinoa Willd. includes domesticated populations that are not Andean, and Andean populations that are not domesticated. Comparative analysis of leaf morphology and allozyme frequencies have demonstrated that Andean populations, both domesticated(quinua) and free-living(ajara), represent an exceptionally homogeneous unit that is well differentiated from allied domesticates of coastal Chile(quingua) and freeliving populations of the Argentine lowlands(C. hircinum). This pattern of relationships indicates that Andean populations represent a monophyletic crop/weed system that has possibly developed through cyclic differentiation (natural vs. human selection) and introgressive hybridization. Relative levels of variation suggest that this complex originated in the southern Andes, possibly from wild types allied withC. hircinum, with subsequent dispersal north to Colombia and south to the Chilean coast. Coastal populations were apparently isolated from post-dispersal differentiation and homogenization that occurred in the Andes. Other data point toward a center of origin in the northern Andes with secondary centers of genetic diversity subsequently developing in the southern Andes and the plains of Argentina. Comparative linkage of South American taxa, all tetraploid, with North American tetraploids of the subsection will eventually clarify this problem. While the possibility of a direct phyletic connection betweenC. quinoa and the Mexican domesticate(C. berlandieri subsp. nuttalliae,) cannot be excluded, available evidence indicates that the latter represents an autonomous lineage that is associated with the basal tetraploid, C. b. subsp.berlandieri, through var.sinuatum, whereas South American taxa show possible affinities to either var. zschackei or var.berlandieri. An extinct domesticate of eastern North America,C. b. subsp.jonesianum, represents either another instance of independent domestication, possibly from subsp. b. var.zschackei, or a northeastern outlier of subsp.nuttalliae.  相似文献   

7.
In the Azores Islands, two Euphrasia L. (Orobanchaceae) endemic species are recognized: Euphrasia azorica H.C.Watson, an annual herb, in Flores and Corvo, and Euphrasia grandiflora Hochst. ex Seub., a semi-shrub, in Pico, São Jorge and Terceira. Both species are highly endangered and protected by the Bern Convention and Habitats Directive. A population genetics study was conducted with new microsatellite primer pairs in 159 individuals of E. azorica and E. grandifolia, sampled from populations in Flores, Corvo, Pico and São Jorge. Allele sizing suggested that E. azorica is a diploid while E. grandiflora is a tetraploid. Euphrasia grandiflora revealed higher genetic diversity then E. azorica. The E. grandiflora population of Morro Pelado in São Jorge, displayed higher genetic diversity when compared with all others, while the E. azorica population of Madeira Seca in Corvo, showed the lowest. Private and less common bands were also overall higher in E. grandiflora populations. Population genetic structure analysis confirmed a distinctiveness between the two Azorean endemic Euphrasia, in addition to island-specific genetic patterns in E. azorica. The genetic structure obtained for E. grandiflora was complex with the populations of Cabeço do Mistério in Pico Island and of Pico da Esperança in São Jorge sharing the same genetic group, while a putative spatial barrier to gene flow was still retrieved between both islands. Although some populations of both species might benefit from propagation actions, studies are needed on plant host species and translocations between islands or between some populations of a same island should be avoided, due to the occurrence of putative ESUs. Eradication of invasive species and control of grazing will be fundamental to promote in situ restauration.  相似文献   

8.
An understanding of the mean and maximum dispersal distances of target species and subsequent scaling of management efforts to dispersal distance can be key in slowing, containing, or eradicating invasive species. However, dispersal distance is often difficult to measure. Patterns of genetic relatedness can be interpreted to understand realized genetic dispersal distances, which can then be applied to management. We analyzed patterns of microsatellite relatedness using Mantel correlograms and used them to estimate realized dispersal distance for the invasive wetland grass, Phragmites australis. We found that genetic relatedness declined quickly with increasing distance, decreasing to the level of the mean subestuary genetic relatedness by 100 m and to nearly zero by 500 m. We interpret this to indicate that most dispersal is <100 m and very little dispersal extends beyond 500 m. This suggests that management of P. australis may need to consider dispersal from stands up to 500 m from an area that is being managed, perhaps at the scale of whole subestuaries. Results of this study demonstrate that analysis of dispersal patterns can be used to develop landscape-scale approaches to the management of invasive species.  相似文献   

9.
The environmental and social impacts of Phragmites australis invasion have been extensively studied in the eastern United States. In the West where the invasion is relatively recent, a lack of information on distributions and spread has limited our ability to manage invasive populations or assess whether native populations will experience a decline similar to that in the East. Between 2006 and 2015, we evaluated the genetic status, distribution, and soil properties (pH, electrical conductivity, and soil texture) of Phragmites stands in wetlands and riparian systems throughout the Southwest. Native (subspecies americanus), Introduced (haplotype M), and Gulf Coast (subspecies berlandieri) Phragmites lineages were identified in the survey region, as well as watershed-scale hybridization between the Native and Introduced lineages in southern Nevada. Two Asian haplotypes (P and Q) that were previously not known to occur in North America were found in California. The Native lineage was the most frequent and widespread across the region, with four cpDNA haplotypes (A, B, H, and AR) occurring at low densities in all wetland types. Most Introduced Phragmites stands were in or near major urban centers and associated with anthropogenic disturbance in wetlands and rivers, and we document their spread in the region, which is likely facilitated by transportation and urban development. Soil pH of Native and hybrid stands was higher (averaging 8.3 and 8.6, respectively) than Introduced stands (pH of 7.5) and was the only soil property that differed among lineages. Continued monitoring of all Phragmites lineages in the Southwest will aid in assessing the conservation status of Native populations and developing management priorities for non-native stands.  相似文献   

10.
To establish a management plan for endangered and rare species, genetic assessment must first be conducted. The genetic characteristics of plant species are affected by demographic history, reproductive strategy, and distributional range as well as anthropological effects. Abies koreana E. H. Wilson (Pinaceae), Korean fir, is endemic to Korea and found only in sub-alpine areas of the southern Korean Peninsula and Jejudo Island. This species has been designated as critically endangered by the International Union for Conservation of Nature due to a continuous decline in its range and population fragmentation. We genotyped 176 individuals from seven natural populations and two afforested populations on the Korean Peninsula using 19 microsatellite loci. STRUCTURE analysis revealed two genetic clusters in natural populations (F st  = 0.040 and R st  = 0.040) despite low differentiation. We did not detect a significant reduction in genetic diversity or the signature of a genetic bottleneck despite population fragmentation and small population size. We deduced that this species exhibits a metapopulation structure, with the population on Jirisan Mountain acting as a source of genetic diversity for other local small populations on the Korean Peninsula, through contemporary asymmetric gene flow. However, the majority of afforested individuals on the Korean Peninsula originated from a different gene cluster. Thus, we recommend a conservation strategy that maintains two genetically unique clusters.  相似文献   

11.
Many species of the butterfly genus Phengaris are regarded as endangered in many parts of their distribution. Several species are also widely distributed across northern China. Due to land use change and overgrazing, their habitats are declining and many patches have been lost. This paper investigates the distribution and habitats of the Chinese Phengaris species (of the subgenus Maculinea). Shrub-grassland near forests seem the most frequent habitat for Phengaris, while flat open grasslands are mostly over-grazed and thus survival for Phengaris butterflies there seems difficult. Throughout Europe, P. teleius is an endangered species, while there is still no information on its status in China. To improve the knowledge on the population ecology of P. teleius, its population structure, adult behaviour and movement were studied through mark–release–recapture methods in the Qinling Mountains of Taibai County. Eight grassland patches which were potentially suitable were found in the area in 2013. In total, 480 individuals (274 females) were marked, resulting in an overall recapture rate of 16 %. The average daily population size was 44 butterflies (±23 SD) during the adult flight period. Sixty-seven percent of the females and 38 % of the males moved less than 50 m, and 17 % of recaptured females and 38 % of males moved more than 200 m. The mean movement distance was 107 ± 177 m for males and 182 ± 122 m for females. The majority of the recaptures (86 %) were made within the patches, only a few individuals (14 %) moved between patches. Due to human disturbance and destruction, all of the eight potentially suitable patches are becoming smaller and increasingly isolated, thus these populations of P. teleius may face an increasing risk of extinction, which may well be a tip of the iceberg of habitat loss and fragmentation of P. teleius in Taibai County and possibly beyond. Hence we hope our initial study of P. teleius could have positive impacts on the conservation of Phengaris butterflies in China.  相似文献   

12.
On the basis of sequence analysis of the mitochondrial DNA (mtDNA) control region (CR), cytochrome b (Cytb), and cytochrome oxidase-1 (CoI) genes, the relationships of endemic species Salvelinus andriashevi Berg, 1948, represented by the only population from Lake Estikhed (Chukotka), were estimated. The data on the genealogical analysis of mtDNA haplotypes supported phylogenetic closeness of S. andriashevi and S. taranetzi. It was also demonstrated that the specimens of Chukchi charr, along with Salvelinus sp. 4 (Lake Nachikinskoe), S. krogiusae (Lake Dal’nee), S. boganidae and S. elgyticus (Lake El’gygytgyn), and S. a. erythrinus from Canada’s Northwest Territories (NWT) belonged to the Arctic group of Taranetz charr. The problem of coincidence of taxonomic differentiation of charrs of the genus Salvelinus based on morphological and genetic analyses is discussed.  相似文献   

13.
14.
The nucleotide sequence variation of the mitochondrial cytochrome b gene was studied in Schrenck newt Salamandrella schrenckii (Strauch, 1870) from populations of Primorye and the Khabarovsk region. Phylogenetic analysis revealed two haplotype clusters, southern cluster 1 and northern cluster 2, with a divergence of 3%. Analysis of the mtDNA and cytochrome b amino acid sequence variations made it possible to assume that the modern range of Schrenck newt was colonized from south Primorye northwards. In contrast to the southern cluster, the northern one demonstrated all the signs of demographic expansion (a unimodal distribution of pairwise nucleotide differences, specific results of tests for selective neutrality of mtDNA variation, and a good correspondence of genetic parameters to those expected from demographic expansion models).  相似文献   

15.
The prevalence of antibodies to morbilliviruses, Brucella and Toxoplasma was studied in the Black Sea bottlenose dolphin Tursiops truncatus ponticus maintained in captivity. Serum from 59 dolphins was tested, and in most cases the tests were repeated 2–4 years later. Antibodies to the tested pathogens were detected in 69% of the dolphins. Sixteen Black Sea bottlenose dolphin maintained in captivity (27%) had antibodies to two, or even three, of the pathogens. No apparent signs of infection were found in the dolphins; however, the high prevalence of antibodies to the morbilliviruses, Brucella, and Toxoplasma may indicate an important role of dolphins in the ecology of these pathogens.  相似文献   

16.
Species (or cryptic species) identification in microbial eukaryotes often requires a combined morphological and molecular approach, and if possible, mating reaction tests that confirm, for example, that distant populations are in fact one species. We used P. biaurelia (one of the 15 cryptic species of the P. aurelia complex) collected worldwide from 92 sampling points over 62 years and analyzed with the three above mentioned approaches as a model for testing protistan biogeography hypotheses. Our results indicated that despite the large distance between them, most of the studied populations of P. biaurelia do not differ from each other (rDNA fragment), or differ only slightly (COI mtDNA fragment). These results could suggest that in the past, the predecessors of the present P. biaurelia population experienced a bottleneck event, and that its current distribution is the result of recent dispersal by natural or anthropogenic factors. Another possible explanation for the low level of genetic diversity despite the huge distances between the collecting sites could be a slow rate of mutation of the studied DNA fragments, as has been found in some other species of the P. aurelia complex. COI haplotypes determined from samples obtained during field research conducted in 2015–2016 in 28 locations/374 sampling points in southern Poland were shared with other, often distant P. biaurelia populations. In the Kraków area, we found 5 of the 11 currently known COI P. biaurelia haplotypes. In 5 of 7 reservoirs from which P. biaurelia was obtained, two different COI haplotypes were identified.  相似文献   

17.
The grass shrimp Palaemonetes pugio, a species common to Spartina alterniflora-dominated marshes, may be sensitive to the invasion of the common reed Phragmites australis in northeastern US salt marshes. We examined two questions: (1) Do grass shrimp have a preference for the native plant over the non-native plant? (2) Are grass shrimp more effective foragers on P. australis? We tested the first hypothesis by comparing the amount of time shrimp spend in physical contact with the plant types over a 1-h period. Shrimp were observed under different arrangements of vegetation to control for differences in conspicuous structural features. Additionally, the amount of time shrimp spent foraging on S. alterniflora and P. australis shoots was compared to determine if shrimp graze more often on S. alterniflora. Shrimp spent significantly more time in contact with S. alterniflora only when plant types were grouped at opposite ends of aquaria, but did not exhibit a foraging preference for this plant type. To address our second question, we investigated the effects of shrimp foraging on stem epifauna, an assemblage of semi-aquatic invertebrates associated with macrophyte shoots. Previous research showed that P. australis supports a lower density of stem-dwelling epifauna relative to S. alterniflora. We hypothesized that the primary grazer of this community, P. pugio, can forage on P. australis stems more effectively due to structural differences between the two plants, causing the lower abundance of epifauna through top-down effects. We exposed individual shoots inhabited by epifauna to shrimp and compared faunal densities on exposed shoots to densities on control shoots after 18 h. The reduction of epifauna by predation was proportional on the two plant types. Therefore, top-down effects can be ruled out as an explanation for the patchy distribution of epifauna observed in P. australis–S. alterniflora marshes.  相似文献   

18.
We conducted comparative phylogeographic and population genetic analyses of Plestiodon kishinouyei and P. stimpsonii, two sympatric skinks endemic to islands in the southern Ryukyus, to explore different factors that have influenced population structure. Previous phylogenetic studies using partial mitochondrial DNA indicate similar divergence times from their respective closest relatives, suggesting that differences in population structure are driven by intrinsic attributes of either species rather than the common set of extrinsic factors that both presumably have been exposed to throughout their history. In this study, analysis of mtDNA sequences and microsatellite polymorphism demonstrate contrasting patterns of phylogeography and population structure: P. kishinouyei exhibits a lower genetic variability and lower genetic differentiation among islands than P. stimpsonii, consistent with recent population expansion. However, historical demographic analyses indicate that the relatively high genetic uniformity in P. kishinouyei is not attributable to recent expansion. We detected significant isolation-by-distance patterns among P. kishinouyei populations on the land bridge islands, but not among P. stimpsonii populations occurring on those same islands. Our results suggest that P. kishinouyei populations have maintained gene flows across islands until recently, probably via ephemeral Quaternary land bridges. The lower genetic variability in P. kishinouyei may also indicate smaller effective population sizes on average than that of P. stimpsonii. We interpret these differences as a consequence of ecological divergence between the two species, primarily in trophic level and habitat preference.  相似文献   

19.
The marine species usually show high dispersal capabilities accompanied by high levels of gene flow. On the other hand, many physical barriers distribute along the continental marginal seas and may prevent dispersals and increase population divergence. These complexities along the continental margin generate serious challenges to population genetic studies of marine species. Chinese sea bass Lateolabrax maculatus distributes broad latitudinal gradient spanning from the tropical to the mid-temperate zones in the continental margin seas of the Northwest Pacific Ocean. Using the double digest restriction-site-associated DNA tag sequencing (ddRAD) approach, we genotyped 10,297 SNPs for 219 Chinese seabass individuals of 12 populations along the Chinese coast in the Northwest Pacific region. Genetic divergence among these populations was evaluated, and population structure was established. The results suggested that geographically distant populations in the Bohai Gulf and the Beibu Gulf retain significant genetic divergence, which are connected by a series of intermediate populations in between. The results also suggested that Leizhou Peninsula, Hainan Island, and Shandong Peninsula are major physical barriers and substantially block gene flow and genetic admixture of L. maculatus. We also investigated the potential genetic basis of local adaptation correlating with population differentiation of L. maculatus. The sea surface temperature is a significantly differentiated environmental factor for the distribution of L. maculatus. The correlation of water temperature and genetic variations in extensively distributed populations was investigated with Bayesian-based approaches. The candidate genes underlying the local selection in geographically divergent populations were identified and annotated, providing clues to understand the potential mechanisms of adaptive evolution. Overall, our genome scale population genetic analysis provided insight into population divergence and local adaptation of Chinese sea bass in the continental marginal seas along Chinese coast.  相似文献   

20.
The gastropod Hexaplex trunculus is widely distributed in a relatively large range of habitats, but has no dispersal stage. We investigated its genetic structure across its distribution range, from Mediterranean Sea to adjacent Atlantic coasts, by sequencing mitochondrial DNA portions of the NADH dehydrogenase gene ND2 (420 pb) and the internal transcribed spacer ITS2 (450 pb). Our results suggested a significant genetic variability of ND2 (π = 0.009 and Hd = 0.629) and low variability of the ITS2 sequences. A strong phylogeographic break, separated the Aegean populations from those of Western/Eastern Mediterranean and the Atlantic ones, was founded. The tow lineages may have been separated by vicariance events due to the Peloponnese break that separates the Aegean populations from other populations and was maintained until now by the quasi-circular anticyclonic front associated to the straits of Cretan Arc of the Peloponnesian Peninsula. Tunisian coasts appear particularly diverse since the two divergent lineages co-occured. These results may have management consequences since H. trunculus is a high commercial value harvested species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号