首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
The interaction of cis-dichloro-(1,2 diethyl-3-aminopyrrolidine)platinum(II) (Ptpyrr) with the polynucleotides poly(I), poly(C) and poly(I) x poly(C) acids was studied by circular dichroism, molecular fluorescence and (1)H NMR spectroscopies. Multivariate Curve Resolution, a factor analysis method, was applied for the analysis and interpretation of spectroscopic data obtained in mole ratio and kinetics studies. This procedure allows the determination of the number of different interaction complexes present during the experiments and the resolution of both concentration profiles and pure spectra for all of them. Two different interaction complexes were observed at the experimental conditions studied. The first one, at low Ptpyrr:polynucleotide ratio (r(Ptpyrr:poly)) values, corresponds to the interaction of Ptpyrr with hypoxanthine bases in the poly(I) moiety. This interaction leads to the destabilization and dissociation of the double-stranded conformation. The second complex was observed at higher r(Ptpyrr:poly) values and corresponds to the interaction of Ptpyrr to cytosine bases in poly(C) moiety. The formation of both complexes showed that the interaction of Ptpyrr with hypoxanthine bases occurred at the first stages of the reaction and with cytosine bases at longer reaction times. The results obtained show the utility of the Multivariate Curve Resolution approach for the analysis of data obtained by monitoring spectroscopically the interaction equilibria of platinum compounds with nucleic acids.  相似文献   

2.
3.
4.
M. Branca  M. E. Marini  B. Pispisa 《Biopolymers》1976,15(11):2219-2226
The binding process between sodium poly(L -glutamate) and trans-2,2′,2″,2?-tetrapyridyl-Fe(III) complex ions in aqueous solution at pH around 7 has been studied by means of equilibrium dialysis and optical measurements. The binding isotherm indicates the occurrence of a cooperative process, whereby bound molecules facilitate the association of additional molecules. According to circular dichroism (CD) data, this effect is coupled with that which sees a conformational change in the charged polypeptide upon progessive binding of complex counterions. All these features are discussed in the light of the structural characteristics of the interacting species. A stereochemical model of the association “complex” is proposed.  相似文献   

5.
It is demonstrated that, poly(A + U) and poly(I + C) are both formed under low ionic strength conditions. Continuous variation studies indicate the formation of copper(II) complexes of poly A, poly C, and poly I, but not of poly U. Copper(II) in a 1:1 ratio to polynucleotide prevents the formation of poly(A + U) and brings about the dissociation of the poly (A + U) complex produced in the absence of the metal. Poly (I + C) is similarly dissociated by copper(II) ions. The addition of sufficient electrolyte reverses the copper(II) induced dissociation of poly(I + C). The effect of copper(II) on ordered synthetic polynucleotides is thus very similar to its effect on DNA.  相似文献   

6.
The homopolynucleotides poly(c1A), poly(c3A), poly(c7A) and poly(h6A)++ were synthesized from their corresponding nucleoside diphosphates using polynucleotide phosphorylase. With the exception of poly(h6A), which displayed no hypochromicity, the homopolynucleotides showed melting profiles similar to poly(A). All these polynucleotides, poly(h6A), poly(c7A), poly(c3A) and poly(c1A) stimulated the binding of Lys-tRNA to ribosomes; the coding activity of poly(c1A), however, was very low. Poly(h6A) was found to be less specific for Lys-tRNA than poly(A). The data supports the exclusive formation of Watson-Crick type base pairs and contradicts Hoogsteen base pairing in codon-anticodon recognition. Since, however, poly(h6A), which can form only one hydrogen bridge per base pair, stimulated the binding of Lys-tRNA comparably to poly(A), the coding activity of the homopolynucleotides tested is discussed in respect to their secondary structure as well as to the pK-values of their 6-amino groups.  相似文献   

7.
Heat of the reaction forming the three-stranded poly (A + 2U) complex   总被引:5,自引:0,他引:5  
P D Ross  R L Scruggs 《Biopolymers》1965,3(4):491-496
  相似文献   

8.
The interactions of amino acid esters with poly(A)x2poly(U) and poly(A)xpoly(U) have been investigated by means of thermal denaturation of these polynucleotides. The esters under consideration raised the melting point, revealing the preferable binding to helical polynucleotide structures. The melting point shifts demonstrate the following sequence of the stabilities of these complexes: Arg greater than Lys much greater than His greater than Met greater than Ser greater than Gly. The same stability order is observed when studying the polynucleotide renaturation in the presence of esters. This order coincides with that previously obtained for the nucleotide base--amino acid ester complexes excepting basic amino acid esters. The ester interactions with poly(A) and poly(U) also reveal the specificity of monomer--monomer interactions. Some dynamic contributions into the studied specificity are also discussed.  相似文献   

9.
10.
The acid-base titration (pH 8 --> pH 2.5 --> pH 8) of eleven mixing curve samples of the poly(dG) plus poly(dC) system has been performed in 0.15 M NaCl. Upon protonation, poly(dG).poly(dC) gives rise to an acid complex, in various amounts according to the origin of the sample. We have established that the hysteresis of the acid-base titration is due to the non-reversible formation of an acid complex, and the liberation of the homopolymers at the end of the acid titration and during the base titration: the homopolymer mixtures remain stable up to pH 7. A 1G:1C stoichiometry appears to be the most probable for the acid complex, a 1G:2C stoichiometry, as found in poly(C(+)).poly(I).poly(C) or poly(C(+)).poly(G).poly(C), cannot be rejected. In the course of this study, evidence has been found that the structural consequences of protonation could be similar for both double stranded poly(dG).poly(dC) and G-C rich DNA's: 1) protonation starts near pH 6, dissociation of the acid complex of poly(dG).poly(dC) and of protonated DNA take place at pH 3; 2) the CD spectrum computed for the acid polymer complex displays a positive peak at 255 nm as found in the acid spectra of DNA's; 3) double stranded poly(dG).poly(dC) embedded in triple-stranded poly(dG).poly(dG).poly(dC) should be in the A-form and appears to be prevented from the proton induced conformational change. The neutral triple stranded poly(dG).poly(dG).poly(dC) appears therefore responsible, although indirectly, for the complexity and variability of the acid titration of poly(dG).poly(dC) samples.  相似文献   

11.
The thermal behavior of the synthetic, high molecular weight, double stranded polynucleotides poly(dA-dT).poly(dA-dT) [polyAT] and poly(dG-dC).poly(dG-dC) [polyGC] solubilized in the aqueous core of the quaternary water-in-oil cationic microemulsion CTAB|n-pentanol|n-hexane|water in the presence of increasing amounts of NiCl(2) at several constant ionic strength values (NaCl) has been studied by means of circular dichroism and electronic absorption spectroscopies. In the microemulsive medium, both polynucleotides show temperature-induced modifications that markedly vary with both Ni(II) concentration and ionic strength. An increase of temperature causes denaturation of the polyAT duplex at low nickel concentrations, while more complex CD spectral modifications are observed at higher nickel concentrations and ionic strengths. By contrast, thermal denaturation is never observed for polyGC. At low Ni(II) concentrations, the increase of temperature induces conformational transitions from B-DNA to Z-DNA form, or, more precisely, to left-handed helical structures. In some cases, at higher nickel concentrations, the CD spectra suggest the presence of Z'-type forms of the polynucleotide.  相似文献   

12.
Zhou Y  Li Y 《Biophysical chemistry》2004,107(3):273-281
DNA interaction with cationic polyelectrolytes promises to be a versatile and effective synthetic transfection agent. This paper presents the study on interaction between a simple artificial cationic polymer, poly(allylamine hydrochloride) (PAA), and herring sperm DNA (hsDNA) using several spectroscopic methods, including light scattering, microscopic FTIR-, CD-spectroscopy and so on. The results show that PAA interacts with DNA through both the phosphate groups and the nitrogenous bases of DNA. The formation of DNA/PAA complex may change the micro-environment of double helix of DNA from B- to C-form and the great changes in DNA morphology occur when N:P ratio is near to 1.0. At the same time, the spectroscopic changes of ethidium bromide (EB) on its binding to DNA are utilized to study the interaction between PAA and DNA. Reversion of the maximum absorption wavelength (numax), reduction of induced circular dichroism and decrease in fluorescence intensity of DNA-EB on addition of PAA indicate that the formation of the complex between DNA and PAA is not in favor of the interaction between DNA and EB. The binding constant of EB and the number of binding sites per nucleotide decrease with increase in the concentrations of PAA, indicating noncompetitive inhibition of EB binding to DNA in the presence of PAA. It is also proved that the formation of the DNA/PAA complex is influenced by pH value and ionic strength.  相似文献   

13.
14.
Large enhancement in the luminescence intensity of the Delta- and Lambda-Ru(phenanthroline)(2)dipyrido[3,2-a:2',3'-c]phenazine](2+) ([Ru(phen)(2)DPPZ](2+)) complexes upon their association with single stranded poly(dA) and poly(dT) is reported in this work. As the mixing ratio ([[Ru(phen)(2)DPPZ](2+)]/[DNA base]) increases, the luminescence intensity increase in a sigmoidal manner, indicating that the enhancement involves some cooperativity. At a high mixing ratio, the luminescence properties are affected by the nature of the DNA bases and not by the absolute configuration of the [Ru(phen)(2)DPPZ](2+) complex, indicating that the single stranded poly(dA) and poly(dT) do not recognize the configuration of the metal complex. In the case of the Lambda-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex, the manner of the enhancement is somewhat different from the other Ru(II) complex-polynucelotide combinations: the luminescence intensity reached a maximum at an intermediate mixing ratio of 0.32, and gradually decreased as the mixing ratio increased. In contrast to other complexes at high mixing ratios, an upward bending curve was found in the Stern-Volmer plot, which indicates that the micro-environment of the Lambda-[Ru(phen)(2)DPPZ](2+) is heterogeneous. In the Delta-[Ru(phen)(2)DPPZ](2+)-poly(dT) complex case, formation of this highly luminescent species at an intermediate mixing ratio is far less effective.  相似文献   

15.
The fixation of trans-(NH3)2Cl2 Pt(II) to poly(I)·poly(C) at low rb (< 0.05) leads to the formation of two complexed species. The major species (ca. 82% of bound platinum) involves coordination of platinum to a single hypoxanthine base, while the other species involves coordination of two hypoxanthine bases, which are either far apart on the same strand or on separate poly(I) strands, to the platinum. These same two species are found after reaction with poly(I), as are two other species throughout the entire rb range studied (rb = 0–0.30). The latter two species are assigned to trans-Pt bound to two bases on a poly(I) strand with (a) one or (b) two free bases between the two bound bases. These two species, (a) and (b), account for ca. 35% of the bound platinum, although the 1:1 species remains dominant (ca. 55%). These two additional species are observed at high rb (>0.075) after reaction with poly(I)·poly(C) but as very minor species. They are formed by reaction with melted poly(I) loops. Also at high rb, we have observed a shifted cytidine H5 resonance arising from interaction of trans-Pt with a melted loop of poly(C). Most probably, this arises from an intramolecular poly(I) to poly(C) crosslink. Results from the reaction of trans-Pt with poly(C) are presented for comparison.  相似文献   

16.
Structure and dynamic properties of free poly(methacrylic acid) (PMA) and PMA complexed with alpha-chymotrypsin (CT) were studied using the time resolved fluorescence anisotropy technique. We have found that the interaction of PMA with CT induces the formation of a quasi-regular structure of PMA. At a CT/PMA weight ratio of 4:1 the interaction with CT leads to formation of approximately four equal segments of polyelectrolyte, each binding one CT molecule and characterized by an independent rotational mobility. Increase of the CT/PMA weight ratio above 8:1 gives rise to the overall rotation of the whole enzyme-polyelectrolyte complex. In water-ethanol mixtures the mobility of PMA segments containing CT decreases and the structure of the complex becomes even more rigid due to enhancement of the electrostatic interaction between CT and PMA. Formation of the compact and quasi-regular structure of the complex is perhaps the main reason behind the enhancement of enzyme stability and suppression of enzyme aggregation in water-organic cosolvent mixtures.  相似文献   

17.
18.
19.
H Yamamoto  T Hayakawa 《Biopolymers》1971,10(2):309-320
β-(l)-Menthyl D - and L -aspartates were prepared by a fusion reaction of N-phthalyl D - and L -aspartic anhydrides with l-menthol, followed by hydrazinolysis. The monomers were then polymerized to poly[β-(l)-menthyl D - and L -aspartates] by the N-carboxyanhydride method. These polymers were soluble in many organic solvents, such as diethyl ether, tetrahydrofuran, chloroform, n-bexane, and dioxane. From the results obtained by a study of the optical rotatory dispersions and circular dichroisms, poly [β-(l)-menthyl D -aspartate] was found to be a β form structure in solution. On the other hand, poly[β-(l)-menthyl L -aspartate] was a random-coil structure. These results suggest that the asymmetry of the l-menthyl chromophore in the side chain interacts with the polypeptide main chain and causes an extraordinary optical rotation.  相似文献   

20.
The interaction between horse cytochrome c and the tryptic fragment of bovine liver microsomal cytochrome b5 in the absence and presence of [Cr(ethylenediamine)3]Cl3 was studied by 1H NMR spectroscopy. The protein-protein interaction region on cytochrome b5 was found to be different from the [Cr(en)3]3+-binding region. The solvent-exposed propionate-bearing edge of the haem of cytochrome b5 is accessible to [Cr(en)3]3+ in the interprotein complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号