首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We have identified a novel frog gene, Pintallavis (the Catalan for lipstick), that is related to the fly fork head and rat HNF-3 genes. Pintallavis is expressed in the organizer region of gastrula embryos as a direct zygotic response to dorsal mesodermal induction. Subsequently, Pintallavis is expressed in axial midline cells of all three germ layers. In axial mesoderm expression is graded with highest levels posteriorly. Midline neural plate cells that give rise to the floor plate transiently express Pintallavis, apparently in response to induction by the notochord. Overexpression of Pintallavis perturbs the development of the neural axis, suppressing the differentiation of anterior and dorsal neural cell types but causing an expansion of the posterior neural tube. Our results suggest that Pintallavis functions in the induction and patterning of the neural axis.  相似文献   

2.
We have cloned a cDNA encoding the chick HNF-3β gene and have used RNA and antibody probes that detect HNF-3β to monitor the normal and induced expression of the gene in early embryos. HNF-3β is expressed in Koller's sickle, at the onset of primitive streak formation, and later in Hensen's node. At neural plate and neural tube stages, HNF-3 β is expressed transiently in the notochord and is then expressed by floor plate cells. Prospective floor plate cells that are located in the epiblast immediately anterior to Hensen's node prior to its regression do not express HNF-3β, providing evidence that floor plate fate is normally determined only after these cells populate the midline of the neural plate and overlie the notechord. Removal of the notochord in vivo prevents floor plate development and in this condition HNF-3β is not expressed by cells at the ventral midline of the neural tube. Notochord grafts induce ectopic floor plate development and ectopic neural expression of HNF-3 β. In vitro, neural plate explants are induced to express HNF-3β by notochord cells in a contact-dependent but cycloheximide-resistant manner, providing evidence that expression of HNF-3 β is a direct response of neural plate cells to notochord-derived inducing signals.  相似文献   

3.
Hensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells. In this work, we demonstrate that the node can be divided into functionally distinct subregions. Caudalward migration of the node depends on the presence of the most posterior region, which is closely apposed to the anterior portion of the primitive streak as defined by expression of the T-box gene Ch-Tbx6L. We call this region the axial-paraxial hinge because it corresponds to the junction of the presumptive midline axial structures (notochord and floor plate) and the paraxial mesoderm. We propose that the axial-paraxial hinge is the equivalent of the neuroenteric canal of other vertebrates such as Xenopus. Blocking the caudal movement of Hensen's node at the 5- to 6-somite stage by removing the axial-paraxial hinge deprives the embryo of midline structures caudal to the brachial level, but does not prevent formation of the neural tube and mesoderm located posteriorly. However, the whole embryonic region generated posterior to the level of Hensen's node arrest undergoes widespread apoptosis within the next 24 hours. Hensen's node-derived structures (notochord and floor plate) thus appear to produce maintenance factor(s) that ensures the survival and further development of adjacent tissues.  相似文献   

4.
5.
6.
7.
8.
9.
The node of the mouse gastrula is the major source of the progenitor cells of the notochord, the floor plate, and the gut endoderm. The node may also play a morphogenetic role since it can induce a partial body axis following heterotopic transplantation. The impact of losing these progenitor cells and the morphogenetic activity on the development of the body axes was studied by the ablation of the node at late gastrulation. In the ablated embryo, an apparently intact anterior-posterior body axis with morphologically normal head folds, neural tube, and primitive streak developed during early organogenesis. Cell fate analysis revealed that the loss of the node elicits de novo recruitment of neural ectoderm and somitic mesoderm from the surrounding germ-layer tissues. This leads to the restoration of the neural tube and the paraxial mesoderm. However, the body axis of the embryo was foreshortened and somite formation was retarded. Histological and gene expression studies reveal that in most of the node-ablated embryos, the notochord in the trunk was either absent or interrupted, and the floor plate was absent in the ventral region of the reconstituted neural tube. The loss of the node did not affect the differentiation of the gut endoderm or the formation of the mid- and hindgut. In the node-ablated embryo, expression of the Pitx2 gene in the lateral plate mesoderm was no longer restricted to the left side but was found on both sides of the body or was completely absent from the lateral plate mesoderm. Therefore, the loss of the node results in the failure to delineate the laterality of the body axis. The node and its derivatives therefore play a critical role in the patterning of the ventral neural tube and lateral body axis but not of the anterior-posterior axis during early organogenesis.  相似文献   

10.
11.
In vertebrate embryos, the class I subtype forkhead domain gene HNF-3 is essential for the formation of the endoderm, notochord and overlying ventral neural tube. In ascidian embryos, Brachyury is involved in the formation of the notochord. Although the results of previous studies imply a role of HNF-3 in notochord differentiation in ascidian embryos, no experiments have been carried out to address this issue directly. Therefore the present study examined the developmental role of HNF-3 in ascidian notochord differentiation. When embryos were injected with a low dose of HNF-3 mRNA, their tails were shortened and when embryos were injected with a high dose of HNF-3 mRNA, which was enough to inhibit differentiation of epidermis and muscle, no obvious ectopic differentiation of endoderm or notochord cells was observed. However, co-injection of HNF-3 mRNA along with Brachyury mRNA resulted in ectopic differentiation of notochord cells in the animal hemisphere, suggesting that HNF-3 acts synergistically with Brachyury in ascidian notochord differentiation. Notochord differentiation of the A-line precursor cells depends on inducing signal(s) from endodermal cells, which can be mimicked by bFGF treatment. Treatment of notochord precursor cells isolated from the 32-cell stage embryoswith bFGF resulted in upregulation of both the HNF-3 and Brachyury genes.  相似文献   

12.
The pattern of expression of HNF-3β in organizing centers and axial structures during early vertebrate development suggests an important role for this protein in the establishment of the vertebrate body plan. To establish whether the pattern of expression during embryogenesis is species specific, a comparative immunohistochemical study of two mammalian species, the house shrew, insectivore, and the mouse was carried out; it is difficult to obtain accurate morphological differences from the study of remotely related animals. The earliest expression of HNF-3β appeared in the node and hypoblast (or endoderm) in both species, where the presumptive foregut endoderm showed intense immunoreactivity prior to the formation of the axial mesoderm, suggesting a role different from that in axial formation. The anterior extension of immunopositive axial mesoderm and the median band of the neural plate varied between the two species, and was delayed in the house shrew. HNF-3β in the anterior end of the foregut disappeared transiently in the house shrew but persisted in the mouse embryo. An asymmetric pattern of distribution in the primitive streak was also observed in the mouse but not in the house shrew. The present immunohistochemical study elucidated that the distribution of HNF-3β is conserved initially but soon manifests species specificities in development even between mammalian species.  相似文献   

13.
14.
The Ciona tadpole is constructed from simple, well-defined cell lineages governed by provisional gene networks that have been defined via extensive gene disruption assays. Here, we examine the patterning of the anterior neural plate, which produces placodal derivatives such as the adhesive palps and stomodeum, as well as the sensory vesicle (simple brain) of the Ciona tadpole. Evidence is presented that the doublesex-related gene DMRT is expressed throughout the anterior neural plate of neurulating embryos. It leads to the activation of FoxC and ZicL in the palp placode and anterior neural tube, respectively. This differential expression depends on FGF signaling, which inhibits FoxC expression in the anterior neural tube. Inhibition of FGF signaling leads to expanded expression of FoxC, the loss of ZicL, and truncation of the anterior neural tube.  相似文献   

15.
16.
Korzh VP 《Ontogenez》2001,32(3):196-203
During gastrulation in vertebrate embryos, three definitive germ layers (ectoderm, mesoderm, and endoderm) are formed by organized and coordinated cell movements. In zebrafish, further subdivision of the mesoderm gives rise to the axial, adaxial and paraxial mesoderm. The axial mesoderm contributes to the prechordal plate and notochord whereas the adaxial and paraxial cells give rise to slow and fast muscles, respectively (Devoto et al., 1996; Blagden et al., 1997; Currie and Ingham, 1998). An inductive interaction in which the notochord plays an essential role will also provide an input in forming other specialized types of tissue contributing to the axial structures: the floor plate located dorsally to the notochord in the ventral spinal cord and the hypochord located ventrally of the notochord and deriving probably from the endoerm. It is known that despite the difference in developmental roles (Str?hle et al., 1993; Krauss et al., 1993), the floor plate and hypochord co-express a number of common molecular markers (Jan et al., 1995; our unpublished results) that may illustrate a certain similarity of their origin. Their close proximity to the notochord determines specialized features of these structures that differ substantially from the rest of the neural tube and endoderm, correspondingly. Once formed under the influence of the notochordal signaling, the floor plate will acquire an ability, similar to the notochord, to express genes of the Hedgehog family and several other groups of genes and to induce specification of ventral cell types in the neural tube during later development (for review, see Korzh, 1998). The biology of the hypochord is much less understood. It seems that the hypochord develops slightly later than the floor plate. It may be required for proper positioning of the dorsal aorta as well as induction of some other endoderm derivatives.  相似文献   

17.
18.
Labelling of Hensen's node in a 6-somite stage chick embryo by the quail/chick chimera method has revealed that, while moving caudalwards as the embryo elongates, the node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endoderm. The node itself contains cells endowed with the capacity to yield midline cells (i.e. notochord and floor plate) along the whole length of the neural axis. Caudal node cells function as stem cells. They are responsible for the apical growth of the cord of cells that are at the origin of the midline structures since, if removed, neither the notochord nor the floor plate, are formed caudally to the ablation. The embryo extends however in the absence of midline cells and a neural tube develops posterior to the excision. Only dorsal molecular markers are detectable on this neural tube (e.g. Pax3 and Slug). The posterior region of the embryo in which the structures secreting Shh are missing undergo cell death within the 24 to 48 hours following its formation. Unpublished results indicate that rescue of the posterior region of the embryo can be obtained by implantation of Shh secreting cells. One of the critical roles of floor plate and notochord is therefore to inhibit the cell death programme in the axial and paraxial structures of the embryo at gastrulation and neurulation stages.  相似文献   

19.
20.
Androgens and mesenchymal factors are essential extracellular signals for the development as well as the functional activity of the prostate epithelium. Little is known of the intraepithelial determinants that are involved in prostatic differentiation. Here we found that hepatocyte nuclear factor-3 alpha (HNF-3 alpha), an endoderm developmental factor, is essential for androgen receptor (AR)-mediated prostatic gene activation. Two HNF-3 cis-regulatory elements were identified in the rat probasin (PB) gene promoter, each immediately adjacent to an androgen response element. Remarkably, similar organization of HNF-3 and AR binding sites was observed in the prostate-specific antigen (PSA) gene core enhancer, suggesting a common functional mechanism. Mutations that disrupt these HNF-3 motifs significantly abolished the maximal androgen induction of PB and PSA activities. Overexpressing a mutant HNF-3 alpha deleted in the C-terminal region inhibited the androgen-induced promoter activity in LNCaP cells where endogenous HNF-3 alpha is expressed. Chromatin immunoprecipitation revealed in vivo that the occupancy of HNF-3 alpha on PSA enhancer can occur in an androgen-depleted condition, and before the recruitment of ligand-bound AR. A physical interaction of HNF-3 alpha and AR was detected through immunoprecipitation and confirmed by glutathione-S-transferase pull-down. This interaction is directly mediated through the DNA-binding domain/hinge region of AR and the forkhead domain of HNF-3 alpha. In addition, strong HNF-3 alpha expression, but not HNF-3 beta or HNF-3 gamma, is detected in both human and mouse prostatic epithelial cells where markers (PSA and PB) of differentiation are expressed. Taken together, these data support a model in which regulatory cues from the cell lineage and the extracellular environment coordinately establish the prostatic differentiated response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号