首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Genetics of antimicrobial resistance   总被引:5,自引:0,他引:5  
Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.  相似文献   

2.
Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.  相似文献   

3.
The selective pressure imposed by the use of antimicrobials in both human and veterinary medicine promotes the spread of multiple antimicrobial resistance. The dissemination of antimicrobial resistance in Salmonella enterica strains, causing severe enteritis in human, has been reported worldwide and is largely attributed to conjugative DNA exchange. In the present review, the relevance of plasmids to the dissemination of antimicrobial resistance in S. enterica is discussed. Recent examples of plasmid-mediated resistance to expanded-spectrum cephalosporins are reported to illustrate the severity of current situation in enteric pathogens. The exchanges between plasmid(s) and the bacterial chromosome and the integration of resistance genes into specialised genetic elements, called integrons, play a major role in acquisition and dissemination of resistance genes. The evolution of a plasmid through the acquisition of integrons is reported, describing novel mechanisms for short-term accumulation of resistance determinants in plasmids circulating in Salmonella.  相似文献   

4.
The extent to which antibiotics given to animals contribute to the overall problem of antibiotic resistance in man is still uncertain. The development of resistance in some human pathogens, such as methicillin-resistant Staphylococcus aureus and multi-drug resistant Mycobacterium tuberculosis, is linked to the use of antimicrobials in man and there is no evidence for animal involvement. However, there are several good examples of transfer of resistant bacteria or bacterial resistance genes from animals to man via the food chain. A bacterial ecosystem exists with simple and complex routes of transfer of resistance genes between the bacterial populations; in addition to transfer of organisms from animals to man, there is also evidence of resistance genes spilling back from humans into the animal population. This is important because of the amplification that can occur in animal populations. The most important factor in the selection of resistant bacteria is generally agreed to be usage of antimicrobial agents and in general, there is a close association between the quantities of antimicrobials used and the rate of development of resistance. The use of antimicrobials is not restricted to animal husbandry but also occurs in horticulture (for example, aminoglycosides in apple growing) and in some other industrial processes such as oil production.  相似文献   

5.
江苏部分地区食源性和人源沙门氏菌的多重耐药性研究   总被引:19,自引:0,他引:19  
从江苏省部分地区收集了117个沙门氏菌分离株,其中食物源和人源菌株分别有81株和36株。16种抗生素敏感性试验表明,有111个分离株对2种或2种以上的抗生素有耐药性,人源沙门氏菌分离株的抗生素耐药率比食物源的高,单一抗生素以链霉素耐药率(92.3%,108/117)最高。对5种或5种以上抗生素耐药的分离株有59株(50.4%),其中对特定六种抗生素:氨苄青霉素、氯霉素、链霉素、磺胺、四环素和卡那霉素耐药(ACSSuTK,R型)的菌株有12株。设计18对耐药基因和I类整合子保守区的引物,对36株有不同来源和耐药特征的多重耐药菌株进行耐药基因和I类整合子的检测,PCR扩增结果与抗生素敏感性表型一致。有30株细菌携带有I类整合子,大小为0.3、0.6、1.0、1.2和1.6kb,其中1.6kb(aadA5-dfr17)大小的整合子在25株细菌中分布(24/36)。接合试验表明,氨苄青霉素、氯霉素、链霉素、甲氧苄氨嘧啶和四环素的耐药特性是由接合性质粒携带。结果显示,耐药基因多数由I类整合子和质粒携带,可以通过接合试验发生转移,可移动的DNA成分可能在耐药特性的转移和分布中起到重要作用。  相似文献   

6.
The use of antimicrobial agents in food animals can select for resistant bacterial pathogens that may be transmitted to humans via the commercial meat supply. In the USA, the FDA's Center for Veterinary Medicine regulatory duties require a determination that antimicrobial drugs are safe and effective for use in food animals. In addition, a qualitative assessment of risks to human health from antimicrobial resistance requires development. This risk assessment process is supported by data generated by the FDA's National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria. NARMS data on antimicrobial susceptibility among Salmonella, Campylobacter, Escherichia coli and Enterococcus is collected. Research activities defining the genetic bases of resistance helps to understand the potential public health risks posed by the spread of antimicrobial resistance from food animal antimicrobial use. These activities help insure that antimicrobials are used judiciously to promote human and animal health.  相似文献   

7.
Antimicrobial resistance of foodborne pathogens   总被引:7,自引:0,他引:7  
Emergence of bacterial antimicrobial resistance has become a serious problem worldwide. While much of the resistance observed in human medicine is attributed to inappropriate use in humans, there is increasing evidence that antimicrobial use in animals selects for resistant foodborne pathogens that may be transmitted to humans as food contaminants.  相似文献   

8.
The widespread agricultural use of antimicrobials has long been considered a crucial influence on the prevalence of resistant genes and bacterial strains. It has been suggested that antibiotic applications in agricultural settings are a driving force for the development of antimicrobial resistance, and epidemiologic evidence supports the view that there is a direct link between resistant human pathogens, retail produce, farm animals, and farm environments. Despite such concerns, little is understood about the population processes underlying the emergence and spread of antibiotic resistance and the reversibility of resistance when antibiotic selective pressure is removed. In this study, hierarchical log-linear modeling was used to assess the association between farm type (conventional versus organic), age of cattle (calf versus cow), bacterial phenotype (resistant versus susceptible), and the genetic composition of Escherichia coli populations (E. coli Reference Collection [ECOR] phylogroup A, B1, B2, or D) among 678 susceptible and resistant strains from a previously published study of 60 matched dairy farms (30 conventional and 30 organic) in Wisconsin. The analysis provides evidence for clonal resistance (ampicillin resistance) and genetic hitchhiking (tetracycline resistance [Tet(r)]), estimated the rate of compositional change from conventional farming to organic farming (mean, 8 years; range, 3 to 15 years), and discovered a significant association between low multidrug resistance, organic farms, and strains of the numerically dominant phylogroup B1. These data suggest that organic farming practices not only change the frequency of resistant strains but also impact the overall population genetic composition of the resident E. coli flora. In addition, the results support the hypothesis that the current prevalence of Tet(r) loci on dairy farms has little to do with the use of this antibiotic.  相似文献   

9.
The widespread agricultural use of antimicrobials has long been considered a crucial influence on the prevalence of resistant genes and bacterial strains. It has been suggested that antibiotic applications in agricultural settings are a driving force for the development of antimicrobial resistance, and epidemiologic evidence supports the view that there is a direct link between resistant human pathogens, retail produce, farm animals, and farm environments. Despite such concerns, little is understood about the population processes underlying the emergence and spread of antibiotic resistance and the reversibility of resistance when antibiotic selective pressure is removed. In this study, hierarchical log-linear modeling was used to assess the association between farm type (conventional versus organic), age of cattle (calf versus cow), bacterial phenotype (resistant versus susceptible), and the genetic composition of Escherichia coli populations (E. coli Reference Collection [ECOR] phylogroup A, B1, B2, or D) among 678 susceptible and resistant strains from a previously published study of 60 matched dairy farms (30 conventional and 30 organic) in Wisconsin. The analysis provides evidence for clonal resistance (ampicillin resistance) and genetic hitchhiking (tetracycline resistance [Tetr]), estimated the rate of compositional change from conventional farming to organic farming (mean, 8 years; range, 3 to 15 years), and discovered a significant association between low multidrug resistance, organic farms, and strains of the numerically dominant phylogroup B1. These data suggest that organic farming practices not only change the frequency of resistant strains but also impact the overall population genetic composition of the resident E. coli flora. In addition, the results support the hypothesis that the current prevalence of Tetr loci on dairy farms has little to do with the use of this antibiotic.  相似文献   

10.
李豫  杨小鹃  张菊梅  王涓  吴清平 《微生物学报》2021,61(12):3918-3927
沙门菌(Salmonella spp.)是公共卫生学上具有重要意义的人畜共患病病原菌。人、畜感染沙门菌后会引起伤寒、副伤寒、胃肠炎、败血症和肠外局灶性感染等疾病。抗生素是治疗沙门菌严重感染的有效手段,随着临床和畜牧业中抗生素的大量使用,使得沙门菌的耐药情况日益严重。整合子是普遍存在于细菌中的一种可移动基因元件,可有效捕获外源基因确保其表达,并复合于转座子、质粒等,使多种耐药基因在细菌种内或者种间进行传播。在过去的二十年中,随着新基因盒和复杂整合子的不断出现,导致整合子系统迅速进化。整合子在沙门菌耐药性传播过程中具有非常重要的作用,因此,本文对整合子系统的分子结构、分类、作用机制,以及沙门菌中存在的Ⅰ、Ⅱ、Ⅲ类整合子介导的耐药性及现有检测方法的研究进展进行综述,以期为沙门菌耐药性研究提供参考。  相似文献   

11.
Antibiotics have saved several millions of lives, but its persistent use of antibiotics in the treatment of various infections, whether bacterial, fungal, viral or parasitic has lead to the development of antibiotic resistance. The rapid emergence of antibiotic resistant strains poses a serious challenge to existing antimicrobial therapies. Due to the increase in drug-resistant pathogens and failure of antibiotics the urgent need for the discovery of novel antimicrobials has been continuously emphasized in the global forum. Here we review about antimicrobial peptides (AMPs), their structural insights and recent developments. We had summarized the major classes, mechanism of action and biophysical parameters that modulate therapeutic potency of AMPs. Also, we had briefed the challenges involved in developing therapeutic peptides and the global market potential for peptide therapeutics.  相似文献   

12.
Anthropogenic environments such as those created by intensive farming of livestock, have been proposed to provide ideal selection pressure for the emergence of antimicrobial-resistant Escherichia coli bacteria and antimicrobial resistance genes (ARGs) and spread to humans. Here, we performed a longitudinal study in a large-scale commercial poultry farm in China, collecting E. coli isolates from both farm and slaughterhouse; targeting animals, carcasses, workers and their households and environment. By using whole-genome phylogenetic analysis and network analysis based on single nucleotide polymorphisms (SNPs), we found highly interrelated non-pathogenic and pathogenic E. coli strains with phylogenetic intermixing, and a high prevalence of shared multidrug resistance profiles amongst livestock, human and environment. Through an original data processing pipeline which combines omics, machine learning, gene sharing network and mobile genetic elements analysis, we investigated the resistance to 26 different antimicrobials and identified 361 genes associated to antimicrobial resistance (AMR) phenotypes; 58 of these were known AMR-associated genes and 35 were associated to multidrug resistance. We uncovered an extensive network of genes, correlated to AMR phenotypes, shared among livestock, humans, farm and slaughterhouse environments. We also found several human, livestock and environmental isolates sharing closely related mobile genetic elements carrying ARGs across host species and environments. In a scenario where no consensus exists on how antibiotic use in the livestock may affect antibiotic resistance in the human population, our findings provide novel insights into the broader epidemiology of antimicrobial resistance in livestock farming. Moreover, our original data analysis method has the potential to uncover AMR transmission pathways when applied to the study of other pathogens active in other anthropogenic environments characterised by complex interconnections between host species.  相似文献   

13.
多重耐药菌在人类、动物和环境的耐药和传播机制   总被引:2,自引:1,他引:1  
王娟  王新华  徐海 《微生物学报》2016,56(11):1671-1679
抗生素等抗菌药物的滥用在全球范围内造成了多重耐药菌的传播。多重耐药菌(Multidrug resistant organisms,MDRO)以及耐药基因(Antibiotic resistance genes,ARGs)可在人类、动物和环境之间进行传播,尤其是ARGs可以通过水平转移的方式在同种属或者不同种属的菌群之间进行传播,使得细菌耐药问题日益严重,耐药机制趋于复杂,疾病治疗更加困难,对人类公众健康造成严重的威胁。因此抗生素等抗菌药物的使用应加以规范。  相似文献   

14.
The discovery and use of antimicrobial agents in the last 50 yr has been one of medicine’s greatest achievements. These agents have reduced morbidity and mortality of humans and animals and have directly contributed to human’s increased life span. However, bacteria are becoming increasingly resistant to these agents by mutations, which alter existing bacterial proteins, and/or acquisition of new genes, which provide new proteins. The latter are often associated with mobile elements that can be exchanged quickly across bacterial populations and may carry multiple antibiotic genes fo resistance. In some case, virulence factors are also found on these same mobile elements. There is mounting evidence that antimicrobial use in agriculture, both plant and animal, and for environmental purposes does influence the antimicrobial resistant development in bacteria important in humans and in reverse. In this article, we will examine the genes which confer resistance to tetracycline, macrolide-lincosamide-streptogramin (MLS), trimethoprim, and sulfonamide.  相似文献   

15.
Veterinary use and antibiotic resistance   总被引:14,自引:0,他引:14  
Globally, an estimated 50% of all antimicrobials serve veterinary purposes. Bacteria that inevitably develop antibiotic resistance in animals comprise food-borne pathogens, opportunistic pathogens and commensal bacteria. The same antibiotic resistance genes and gene transfer mechanisms can be found in the microfloras of animals and humans. Direct contact, food and water link animal and human habitats. The accumulation of resistant bacteria by the use of antibiotics in agriculture and veterinary medicine and the spread of such bacteria via agriculture and direct contamination are documented.  相似文献   

16.
The increasing occurrence of multidrug-resistant pathogens of clinical and agricultural importance is a global public health concern. While antimicrobial use in human and veterinary medicine is known to contribute to the dissemination of antimicrobial resistance, the impact of microbial communities and mobile resistance genes from the environment in this process is not well understood. Isolated from an industrially polluted aquatic environment, Escherichia coli SMS-3-5 is resistant to a record number of antimicrobial compounds from all major classes, including two front-line fluoroquinolones (ciprofloxacin and moxifloxacin), and in many cases at record-high concentrations. To gain insights into antimicrobial resistance in environmental bacterial populations, the genome of E. coli SMS-3-5 was sequenced and compared to the genome sequences of other E. coli strains. In addition, selected genetic loci from E. coli SMS-3-5 predicted to be involved in antimicrobial resistance were phenotypically characterized. Using recombinant vector clones from shotgun sequencing libraries, resistance to tetracycline, streptomycin, and sulfonamide/trimethoprim was assigned to a single mosaic region on a 130-kb plasmid (pSMS35_130). The remaining plasmid backbone showed similarity to virulence plasmids from avian-pathogenic E. coli (APEC) strains. Individual resistance gene cassettes from pSMS35_130 are conserved among resistant bacterial isolates from multiple phylogenetic and geographic sources. Resistance to quinolones was assigned to several chromosomal loci, mostly encoding transport systems that are also present in susceptible E. coli isolates. Antimicrobial resistance in E. coli SMS-3-5 is therefore dependent both on determinants acquired from a mobile gene pool that is likely available to clinical and agricultural pathogens, as well, and on specifically adapted multidrug efflux systems. The association of antimicrobial resistance with APEC virulence genes on pSMS35_130 highlights the risk of promoting the spread of virulence through the extensive use of antibiotics.  相似文献   

17.
Peptidoglycan hydrolase fusions maintain their parental specificities   总被引:3,自引:0,他引:3  
The increased incidence of bacterial antibiotic resistance has led to a renewed search for novel antimicrobials. Avoiding the use of broad-range antimicrobials through the use of specific peptidoglycan hydrolases (endolysins) might reduce the incidence of antibiotic-resistant pathogens worldwide. Staphylococcus aureus and Streptococcus agalactiae are human pathogens and also cause mastitis in dairy cattle. The ultimate goal of this work is to create transgenic cattle that are resistant to mastitis through the expression of an antimicrobial protein(s) in their milk. Toward this end, two novel antimicrobials were produced. The (i) full-length and (ii) 182-amino-acid, C-terminally truncated S. agalactiae bacteriophage B30 endolysins were fused to the mature lysostaphin protein of Staphylococcus simulans. Both fusions display lytic specificity for streptococcal pathogens and S. aureus. The full lytic ability of the truncated B30 protein also suggests that the SH3b domain at the C terminus is dispensable. The fusions are active in a milk-like environment. They are also active against some lactic acid bacteria used to make cheese and yogurt, but their lytic activity is destroyed by pasteurization (63 degrees C for 30 min). Immunohistochemical studies indicated that the fusion proteins can be expressed in cultured mammalian cells with no obvious deleterious effects on the cells, making it a strong candidate for use in future transgenic mice and cattle. Since the fusion peptidoglycan hydrolase also kills multiple human pathogens, it also may prove useful as a highly selective, multipathogen-targeting antimicrobial agent that could potentially reduce the use of broad-range antibiotics in fighting clinical infections.  相似文献   

18.
The selective pressure resulting from the extensive use of antibiotics over the last 50 years has led to the emergence of bacterial resistance and to the dissemination of resistance genes among pathogenic microorganisms. Consequently, we are now at serious risk of suffering intractable, life-threatening infections. The progressive emergence and rapid dissemination of resistance to glycopeptides, the last resort for treating nosocomial infections with enterococci resistant to usual antibiotics, constitute one of the most dramatic examples of such resistance. Enterococci are normal human commensals, but are also a frequent cause of nosocomial urinary tract infections and nosocomial bacteremia. Enterococcus faecalis causes 80 to 90% of human enterococcal infections, while Enterococcus faecium accounts for most of the remainder. During the last decade, our understanding of the genetics and biochemical basis of resistance to glycopeptides has increased greatly. Furthermore, the application of molecular methods for the diagnosis of glycopeptide-resistant enterococci has provided new insights into the epidemiology of enterococcal infections.  相似文献   

19.
A total of 133 Salmonella isolates recovered from retail meats purchased in the United States and the People's Republic of China were assayed for antimicrobial susceptibility, the presence of integrons and antimicrobial resistance genes, and horizontal transfer of characterized antimicrobial resistance determinants via conjugation. Seventy-three (82%) of these Salmonella isolates were resistant to at least one antimicrobial agent. Resistance to the following antibiotics was common among the United States isolates: tetracycline (68% of the isolates were resistant), streptomycin (61%), sulfamethoxazole (42%), and ampicillin (29%). Eight Salmonella isolates (6%) were resistant to ceftriaxone. Fourteen isolates (11%) from the People's Republic of China were resistant to nalidixic acid and displayed decreased susceptibility to ciprofloxacin. A total of 19 different antimicrobial resistance genes were identified in 30 multidrug-resistant Salmonella isolates. The bla(CMY-2) gene, encoding a class A AmpC beta-lactamase, was detected in all 10 Salmonella isolates resistant to extended-spectrum beta-lactams. Resistance to ampicillin was most often associated with a TEM-1 family beta-lactamase gene. Six aminoglycoside resistance genes, aadA1, aadA2, aacC2, Kn, aph(3)-IIa, and aac(3)-IVa, were commonly present in the Salmonella isolates. Sixteen (54%) of 30 Salmonella isolates tested had integrons ranging in size from 0.75 to 2.7 kb. Conjugation studies demonstrated that there was plasmid-mediated transfer of genes encoding CMY-2 and TEM-1-like beta-lactamases. These data indicate that Salmonella isolates recovered from retail raw meats are commonly resistant to multiple antimicrobials, including those used for treating salmonellosis, such as ceftriaxone. Genes conferring antimicrobial resistance in Salmonella are often carried on integrons and plasmids and could be transmitted through conjugation. These mobile DNA elements have likely played an important role in transmission and dissemination of antimicrobial resistance determinants among Salmonella strains.  相似文献   

20.
Because of the emergence of antibiotic‐resistant pathogens worldwide, a number of infectious diseases have become difficult to treat. This threatening situation is worsened by the fact that very limited progress has been made in developing new and potent antibiotics in recent years. However, a group of antimicrobials, the so‐called bacteriocins, have been much studied lately because they hold a great potential in controlling antibiotic‐resistant pathogens. Bacteriocins are small antimicrobial peptides (AMPs) produced by numerous bacteria. They often act toward species related to the producer with a very high potency (at pico‐ to nanomolar concentration) and specificity. The common mechanisms of killing by bacteriocins are destruction of target cells by pore formation and/or inhibition of cell wall synthesis. Several studies have revealed that bacteriocins display great potential in the medical sector as bacteriocinogenic probiotics and in the clinic as therapeutic agents. In this review, we discuss the emerging antibiotic resistance and strategies to control its dissemination, before we highlight the potential of AMPs from bacteria as a new genre of antimicrobial agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号