首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The adenovirus E1A transforming region, which encodes immortalization, partial cell transformation, and gene activation functions, expresses two early mRNAs, 13S and 12S. Multiple-T antigen species with different electrophoretic mobilities are formed from each mRNA, presumably by unknown posttranslational modifications. The adenovirus type 12 (Ad12) 13S and 12S mRNAs encode E1A T antigens of 266 and 235 amino acid residues (266R and 235R), respectively. To study possible posttranslational processing at the N and C termini and to distinguish between the Ad12 266R and 235R T antigens, we prepared antibodies targeted to synthetic peptides encoded at the common C (peptide 204) and N (peptide 202) termini of the 266R and 235R T antigens and at the unique internal domain of the 266R T antigen (peptide 206). The specificity of each anti-peptide antibody was confirmed by immunoprecipitation of the 266R and 235R T antigens produced in Escherichia coli. Immunoprecipitation analysis of the E1A T antigens synthesized in Ad12-infected KB cells revealed the following. Antibody to the common C terminus recognized three T antigens with apparent Mrs of 43,000, 42,000, and 39,000 (43K, 42K, and 39K). All three forms were phosphorylated and were present in both the nucleus and the cytoplasm. The 43K and 42K T antigens were rapidly synthesized during a 10-min pulse with [35S]methionine in Ad12-infected cells. The 43K T antigen had a half-life of 20 min, the 42K T antigen had a longer half-life of about 40 min, and the 39K T antigen became the predominant E1A T antigen. Antibodies to the unique region immunoprecipitated the 43K T antigen but not the 42K and 39K T antigens. Antibody to the N terminus immunoprecipitated the 43K and 42K T antigens but not the 39K T antigen, suggesting that the 39K T antigen possessed a modified N terminus. Partial N-terminal amino acid sequence analysis showed that the 43K and 42K T antigens contain methionine at residues 1 and 5, as predicted from the DNA sequence, whereas no methionine was released from the 39K T antigen during the first six cycles of Edman degradation. We propose that the short-lived 43K T antigen is the primary product of the 13S mRNA, the 266R T antigen; the somewhat more stable 42K T antigen is the primary product of the 12S mRNA, the 235R T antigen.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Region 1 DNA sequences (map positions 0 to 11% on the linear adenovirus 2 genome) are expressed both early and late in lytic infection and are required for transformation by the virus. During productive infection six distinct cytoplasmic RNAs are synthesized from this region. These RNAs comprise two families, each consisting of three size classes that share 3' sequences. Region 1 RNA's were purified by hybridization selection, using restriction fragments bound to nitrocellulose membranes, and by size fractionation. The isolated RNAs were then translated in cell-free systems derived from wheat germ and rabbit reticulocytes. The family of RNAs specified by 0 to 4.4 sequences includes two RNAs, which are 12S and 13S in size. These RNAs were partially separated by molecular weight and translated. The 13S RNA produced 53,000-dalton (53K) and 41K peptides, and the 12S RNA synthesized 47K and 35K products. The family of RNAs mapping from 4.4 to 11.0 encodes three separate polypeptides, each of which can be assigned to a specific RNA. A 12K product that comigrates with structural polypeptide IX is synthesized from the 9S RNA as previously reported (U. Pettersson and M. B. Mathews, Cell 12:741-750, 1977). The 13S RNA encodes a 15K polypeptide that corresponds to a 15K polypeptide in infected cell extracts. The 22s RNA encodes a 52K protein distinct from the 0 to 4.4 polypeptides.  相似文献   

3.
4.
We have characterized the polypeptides translated in vitro by mRNAs of early region 1 (E1) of human adenovirus (Ad) type 2. Poly (A+) polyribosomal RNA was isolated from early Ad2-infected cells, the viral specific mRNAs were selected by hybridization to Ad2 E1a and E1b DNA, and the mRNAs were translated in vitro using [35S]methionine as a labeled precursor with a rabbit reticulocyte lysate. E1a-selected mRNA was translated to the 45-58-kDa cluster of polypeptides. We show here that E1b-selected mRNA can also be translated to the 45-58-kDa cluster of polypeptides in addition to the major 19-kDa polypeptide. The E1b 58-kDa polypeptide was produced only at a low level unless E1b mRNA is fractionated before translation to enrich for the 58-kDa mRNA. Translation of E1b region-selected mRNAs that have been fractionated by size shows that the 22 S mRNA fraction is translated to at least the 53-58-kDa E1a-related polypeptides as well as to E1b 58- and 19-kDa polypeptides. Our experiments suggest that the 22 S mRNA fraction includes E1a-E1b overlapping mRNA which was translated to E1a-related polypeptides as well as E1b 22 S mRNA. When compared by two-dimensional gel electrophoresis and by tryptic peptide mapping, the cluster of polypeptides translated from E1a-selected mRNA and the cluster translated from E1b-selected mRNA were distinguishable. A possible explanation for this is discussed, based upon splicing sites of the E1a-E1b overlapping mRNA which would result in an amino acid sequence with a COOH-terminal end slightly different from that of E1a polypeptides.  相似文献   

5.
6.
The adenovirus E1A region encodes three overlapping mRNAs, designated 9S, 12S and 13S. They differ from each other with regard to the length of the intron which is removed by RNA splicing. We have constructed E1A genes with deletions and insertions in the intervening sequence that is common to all three E1A mRNAs, in a search for signals which influence splicing of the 13S mRNA. Mutant plasmids were transfected into HeLa cells and the transiently expressed E1A mRNAs characterized by the S1 protection assay. The results show that five upstream and 20 downstream nucleotides are sufficient to allow for a correct utilization of the 5'-splice junction for the E1A 13S mRNA. Moreover, we show that a minimal intron length of 78 nucleotides is required for efficient 13S mRNA splicing. The ability of mutants with large intron deletions to maturate a 13S mRNA could partially be restored by expanding the intron length with phage lambda sequences. However, in no case was the normal splicing efficiency obtained with these mutants. In contrast, one mutant in which sequences from the authentic 13S mRNA intron were used to expand the intron expressed almost normal levels of 13S mRNA, thus suggesting that signals which specifically promote 13S mRNA splicing exist.  相似文献   

7.
G Winberg  T Shenk 《The EMBO journal》1984,3(8):1907-1912
  相似文献   

8.
A polypeptide of 55,000 daltons (55K) is linked, probably covalently, to the K' termini of adenovirus type 2 DNA. The 55K polypeptide is synthesized during early stages of infection (T. Yamashita, M. Arens, and M. Green, J. Virol. 30: 497-507, 1979) and thus may function in viral DNA replication, gene regulation, or cell transformation. Several virus-coded early polypeptides have been identified that could correspond to the terminal 55K, including the E1-40K-50K and E1-53K candidate transformation polypeptides and the E2-42K/47K/73K single-stranded DNA-binding polypeptide. We show here that two-dimensional tryptic [35S]methionine-peptide maps of the terminal 55K differ completely from [35S]methionine-peptide maps of four related E1-40K-50K polypeptides, the E1-53K, and the related E2-42K, E2-47K, and E2-73K polypeptides. We conclude that the terminal 55K polypeptide does not correspond to any of the known virus-coded early polypeptides.  相似文献   

9.
The detailed organization of the RNAs transcribed from an early gene cluster encoded by vaccinia virus has been determined from the information derived from several complementary techniques. These include hybrid selection coupled with cell-free translation to locate DNA sequences complementary to mRNAs encoding specific polypeptides; RNA filter hybridization to size and locate on the DNA mature RNAs as well as higher-molecular-weight RNAs; S1 nuclease mapping to precisely locate the 5' and 3' ends of the RNAs; S1 nuclease mapping to precisely locate the 5' and 3' ends of the RNAs; and fractionation of hybrid-selected mRNAs in an agarose gel containing methyl mercury hydroxide followed by the cell-free translation of these mRNAs to definitively ascertain the size of the mRNA encoding each polypeptide. The early gene cluster is located between 21 and 26 kilobases from the left end of the vaccinia virus genome and is encoded by a 5.0-kilobase EcoRI fragment which spans the HindIII-N, -M, and -K fragments. Transcribed towards the left terminus are four mature mRNAs, 1,450, 950, 780, and 400 nucleotides in size, encoding polypeptides of 55, 30, 20, and 10 kilodaltons, respectively. These mRNAs are colinear with the DNA template and are closely spaced such that the 5' terminus of one mRNA is within 50 base pairs of the 3' terminus of the adjacent RNA. In addition to the mature size mRNAs, there are higher-molecular-weight RNAs, 5,000, 3,300, 2,350, 2,300, 1,800, 1,700, and 1,350 nucleotides in size. The 5' and 3' termini of the high-molecular-weight RNAs are coterminal with the 5' and 3' termini of the mature size mRNA. The implications of this arrangement and the biogenesis of these early mRNAs are discussed.  相似文献   

10.
S Pilder  J Logan    T Shenk 《Journal of virology》1984,52(2):664-671
The adenovirus 5 mutant H5dl337 lacks 146 base pairs within early region 1B. The deletion removes a portion of the region encoding the E1B 21,000-molecular-weight (21K) polypeptide, but does not disturb the E1B-55K/17K coding region. The virus is slightly defective for growth in cultured HeLa cells, in which its final yield is reduced ca. 10-fold compared with wild-type virus. The mutant displays a striking phenotype in HeLa cells. The onset of cytopathic effect is dramatically accelerated, and both host cell and viral DNAs are extensively degraded late after infection. This defect has been described previously for a variety of adenovirus mutants and has been termed a cytocidal (cyt) phenotype. H5dl337 serves to map this defect to the loss of E1B-21K polypeptide function. In addition to its defect in the productive growth cycle, H5dl337 is unable to transform rat cells at normal efficiency.  相似文献   

11.
12.
13.
The complete nucleotide sequence of the rat aldolase A isozyme gene, including the 5' and 3' flanking sequences, was determined. The gene comprises ten exons, spans 4827 base-pairs and occurs in a single copy per haploid rat genome. The genomic DNA sequence was compared with those of three species of rat aldolase A mRNA (mRNAs I, II and III) that have been found to differ from each other only in the 5' non-coding region and to be expressed tissue-specifically. It revealed that the first exon (exon M1) encodes the 5' non-coding sequence of mRNA I, while the second exon (exon AH1) encodes those of mRNAs II and III and the following eight exons (exons 2 to 9) are shared commonly by all the mRNA species. These results allowed us to conclude that mRNA I and mRNAs II, III were generated from a single aldolase A gene by alternative usage of exon M1 or exon AH1 in addition to exons 2 to 9. S1 nuclease mapping of the 5' ends of their precursor RNAs suggested that these three mRNA species were transcribed from three different initiation sites on the single gene.  相似文献   

14.
15.
Functional bacteriophage T4 deoxynucleotide kinase and α-glucosyl transferase mRNAs can be isolated from polysomes extracted from cells 8 min after infection. At least 55% of the 8-min deoxynucleotide kinase mRNA is associated with polysomes and is released from the cell membrane by deoxyribonuclease (DNase) treatment (soluble mRNA). Approximately 20% of the kinase mRNA remains tightly bound to membrane after DNase treatment (membrane mRNA) and 25% of the kinase mRNA is routinely lost during fractionation. The membrane-bound kinase mRNA is about three times as stable in vitro as the soluble kinase mRNA. Soluble kinase mRNA (14.5S) is found associated with as few as one ribosome and as many as 22 ribosomes; however, 14.5S α-glucosyl transferase mRNA is found predominantly in six ribosome polysomes. The size of the α-glucosyl transferase mRNA is heterogenous, ranging between 14.5 and 20S. The larger α-glucosyl transferase mRNAs are never found on small polysomes but appear only in polysomes containing at least nine ribosomes (18S α-glucosyl transferase mRNA). Maximum-size α-glucosyl transferase mRNA (approximately 20S) appears on polysomes containing at least 14 ribosomes. The relationships between decay of T4 mRNA and polysome size and the location of ribosome loading sites on the 20S α-glucosyl transferase message are also discussed.  相似文献   

16.
J R Cutt  T Shenk    P Hearing 《Journal of virology》1987,61(2):543-552
Peptide-specific antisera were developed to analyze the products encoded by adenovirus type 5 early region 4 (E4) open reading frames 6 and 7. Reading frame 6 previously was shown to encode a 34-kilodalton polypeptide (34K polypeptide) that forms a complex with the early region 1B (E1B)-55K antigen and is required for efficient viral growth in lytic infection. Antisera that were generated recognized the E4-34K protein as well as a family of related polypeptides generated by the fusion of open reading frames 6 and 7. These polypeptides shared amino-terminal sequences with the 34K protein. Short-pulse analysis suggested that the heterogeneity observed with the 6/7 fusion products resulted from differential splicing patterns of related E4 mRNAs. An antiserum directed against the amino terminus of reading frame 6 recognized only the free form of the 34K antigen that was not associated with the E1B-55K protein. This observation allowed the determination of the stability of the free and complexed form of this polypeptide. Pulse-chase analyses demonstrated that both forms of the 34K protein had half-lives greater than 24 h, suggesting that complex formation did not result in stabilization of this gene product. The half-lives of the 6/7 fusion products were approximately 4 h. The 34K protein also was shown to have a nuclear localization within infected cells. Finally, analysis of a mutant carrying deletions in both the E4-34K and E1B-55K polypeptides indicated that the complex formed between these two proteins was a functional unit in lytic infection.  相似文献   

17.
We have used DNA sequencing, mRNA mapping and in vitro translation to characterise three partially overlapping genes in the genome of herpes simplex virus (HSV) type 1. These genes specify three mRNAs with distinct 5' termini but a common 3' terminus, the longest of which is immediate-early (IE) mRNA-5. The 12,000 MW (12K) IE polypeptide encoded by IEmRNA-5 is translated from an 88 codon open reading frame, leaving a 1200 base 3' non-translated region. The second mRNA (mRNA-B) is initiated within the coding sequence of IEmRNA-5, and encodes a 21K polypeptide. The 12K and 21K polypeptide coding regions do not overlap. The third mRNA (mRNA-C) is initiated within the coding region of mRNA-B, and encodes a 33K polypeptide. The reading frame for 33K has a 110 codon out-of-frame overlap with the 21K reading frame. This is the first instance of overlapping genes described for HSV. The 21K polypeptide is thought to be a DNA binding protein and is remarkable for an array of 24 tandem repeats of the sequence X/Pro/Arg (where X represents predominantly Glu, Asp, Thr, Ser or Val) in its C-terminal portion. This array, which occupies most of the region of overlap with 33K, can vary in repeat number between virus strains.  相似文献   

18.
19.
Highly purified adenovirus type 2 terminal protein (TP) with an apparent Mr of 55,000 (55K) was prepared in quantities of 10 to 30 μg from guanidine hydrochloride- or sodium dodecyl sulfate-disrupted virions (60 to 120 mg). Guinea pigs were immunized with 14 to 20 injections of TP in amounts of 1 to 2 μg. Antiserum to TP was used to study the intracellular polypeptides related to adenovirus type 2 TP. By immunoprecipitation with anti-TP serum, we identified 80K and 76K polypeptides in the nucleoplasmic and cytoplasmic S100 fractions of [35S]methionine-labeled cells early and late after infection with Ad2. By immunoautoradiographic analysis which eliminates coprecipitation of unrelated proteins, we identified an 80K polypeptide (probably an 80K-76K doublet) in unlabeled, late infected cells, using anti-TP serum and 125I-labeled staphylococcal protein A. About two- to threefold-higher levels of the 80K and 76K polypeptides were present in the nucleoplasm than in the S100 fraction, and two- to threefold-higher levels were found in late infected cells than in early infected cells (cycloheximide enhanced, arabinofuranosylcytosine treated). We did not detect the 80K or 76K polypeptide in uninfected cells, indicating that these polypeptides are virus coded. Tryptic peptide map analysis showed that the 80K and 76K polypeptides are very closely related and that they share peptides with the DNA-bound 55K TP. Our data provide the first direct demonstration of intracellular 80K and 76K forms of TP. The intracellular 80K and 76K polypeptides are closely related or identical to the 80K polypeptide that Challberg and co-workers (Proc. Natl. Acad. Sci. U.S.A. 77:5105-5109, 1980) detected at the termini of adenovirus DNA synthesized in vitro and to the 87K polypeptide that Stillman and co-workers (Cell 23:497-508, 1981) translated in vitro. We did not detect the 55K TP in early or late infected cells, consistent with the proposal by Challberg and co-workers that the 80K polypeptide is a precursor to the virion-bound TP and that the conversion of the 80K polypeptide to the 55K TP occurs during virus maturation. The 80K and 76K polypeptides have many more methionine-containing tryptic peptides than does the 55K TP, and most of the tryptic peptides unique to the 80K and 76K polypeptides are very hydrophobic. Thus, the conversion of the 80K and 76K polypeptides to the 55K TP may involve the removal of a specific hydrophobic protein region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号