首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Twisted gastrulation (Tsg) is a secreted protein that regulates Bmp signaling in the extracellular space through its direct interaction with Bmp/Dpp and Chordin (Chd)/Short gastrulation (Sog). The ternary complex of Tsg/Chd/Bmp is cleaved by the metalloprotease Tolloid (Tld)/Xolloid (Xld). Studies in Drosophila, Xenopus and zebrafish suggest that Tsg can act both as an anti-Bmp and as a pro-Bmp. We have analyzed Tsg loss-of-function in the mouse. Tsg homozygous mutants are viable but of smaller size and display mild vertebral abnormalities and osteoporosis. We provide evidence that Tsg interacts genetically with Bmp4. When only one copy of Bmp4 is present, a requirement of Tsg for embryonic development is revealed. Tsg-/-;Bmp4+/- compound mutants die at birth and display holoprosencephaly, first branchial arch and eye defects. The results show that Tsg functions to promote Bmp4 signaling during mouse head development.  相似文献   

3.
A variety of genetic evidence suggests that a gradient of Decapentaplegic (Dpp) activity determines distinct cell fates in the dorsal region of the Drosophila embryo, and that this gradient may be generated indirectly by an inverse gradient of the BMP antagonist Short gastrulation (Sog). It has been proposed that Sog diffuses dorsally from the lateral neuroectoderm where it is produced, and is cleaved and degraded dorsally by the metalloprotease Tolloid (Tld). Here we show directly that Sog is distributed in a graded fashion in dorsal cells and that Tld degradation limits the levels of Sog dorsally. In addition, we find that Dynamin-dependent retrieval of Sog acts in parallel with degradation by Tld as a dorsal sink for active Sog.  相似文献   

4.
Structurally unrelated neural inducers in vertebrate and invertebrate embryos have been proposed to function by binding to BMP4 or Dpp, respectively, and preventing these homologous signals from activating their receptor(s). In this study, we investigate the functions of various forms of the Drosophila Sog protein using the discriminating assay of Drosophila wing development. We find that misexpression of Drosophila Sog, or its vertebrate counterpart Chordin, generates a very limited vein-loss phenotype. This sog misexpression phenotype is very similar to that of viable mutants of glass-bottom boat (gbb), which encodes a BMP family member. Consistent with Sog selectively interfering with Gbb signaling, Sog can block the effect of misexpressing Gbb, but not Dpp in the wing. In contrast to the limited BMP inhibitory activity of Sog, we have identified carboxy-truncated forms of Sog, referred to as Supersog, which when misexpressed cause a broad range of dpp(-) mutant phenotypes. In line with its phenotypic effects, Supersog can block the effects of both misexpressing Dpp and Gbb in the wing. Vertebrate Noggin, on the other hand, acts as a general inhibitor of Dpp signaling, which can interfere with the effect of overexpressing Dpp, but not Gbb. We present evidence that Sog processing occurs in vivo and is biologically relevant. Overexpression of intact Sog in embryos and adult wing primordia leads to the developmentally regulated processing of Sog. This in vivo processing of Sog can be duplicated in vitro by treating Sog with a combination of the metalloprotease Tolloid (Tld) plus Twisted Gastrulation (Tsg), another extracellular factor involved in Dpp signaling. In accord with this result, coexpression of intact Sog and Tsg in developing wings generates a phenotype very similar to that of Supersog. Finally, we provide evidence that tsg functions in the embryo to generate a Supersog-like activity, since Supersog can partially rescue tsg(-) mutants. Consistent with this finding, sog(- )and tsg(-) mutants exhibit similar dorsal patterning defects during early gastrulation. These results indicate that differential processing of Sog generates a novel BMP inhibitory activity during development and, more generally, that BMP antagonists play distinct roles in regulating the quality as well as the magnitude of BMP signaling.  相似文献   

5.
Proper axon pathfinding requires that growth cones execute appropriate turns and branching at particular choice points en route to their synaptic targets. Here we demonstrate that the Drosophila metalloprotease tolloid-related (tlr) is required for proper fasciculation/defasciculation of motor axons in the CNS and for normal guidance of many motor axons enroute to their muscle targets. Tlr belongs to a family of developmentally important proteases that process various extracellular matrix components, as well as several TGF-beta inhibitory proteins and pro-peptides. We show that Tlr is a circulating enzyme that processes the pro-domains of three Drosophila TGF-beta-type ligands, and, in the case of the Activin-like protein Dawdle (Daw), this processing enhances the signaling activity of the ligand in vitro and in vivo. Null mutants of daw, as well as mutations in its receptor babo and its downstream mediator Smad2, all exhibit axon guidance defects that are similar to but less severe than tlr. We suggest that by activating Daw and perhaps other TGF-beta ligands, Tlr provides a permissive signal for axon guidance.  相似文献   

6.
The Drosophila decapentaplegic (dpp) gene, a member of the tranforming growth factor β superfamily of growth factors, is critical for specification of the embryonic dorsal-ventral axis, for proper formation of the midgut, and for formation of Drosophila adult structures. The Drosophila tolloid gene has been shown to genetically interact with dpp. The genetic interaction between tolloid and dpp suggests a model in which the tolloid protein participates in a complex containing the DPP ligand, its protease serving to activate DPP, either directly or indirectly. We report here the identification and cloning of another Drosophila member of the tolloid/bone morphogenic protein (BMP) 1 family, tolkin, which is located 700 bp 5' to tolloid. Its overall structure is like tolloid, with an N-terminal metalloprotease domain, five complement subcomponents C1r/C1s, Uegf, and Bmp1 (CUB) repeats and two epidermal growth factor (EGF) repeats. Its expression pattern overlaps that of tolloid and dpp in early embryos and diverges in later stages. In larval tissues, both tolloid and tolkin are expressed uniformly in the imaginal disks. In the brain, both tolloid and tolkin are expressed in the outer proliferation center, whereas tolkin has another stripe of expression near the outer proliferation center. Analysis of lethal mutations in tolkin indicate it is vital during larval and pupal stages. Analysis of its mutant phenotypes and expression patterns suggests that its functions may be mostly independent of tolloid and dpp.  相似文献   

7.
Morphogenesis of the Drosophila wing depends on a series of cell-cell and cell-extracellular matrix interactions. During pupal wing development, two secreted proteins, encoded by the short gastrulation (sog) and decapentaplegic (dpp) genes, vie to position wing veins in the center of broad provein territories. Expression of the Bmp4 homolog dpp in vein cells is counteracted by expression of the Bmp antagonist sog in intervein cells, which results in the formation of straight veins of precise width. We screened for genetic interactions between sog and genes encoding a variety of extracellular components and uncovered interactions between sog and myospheroid (mys), multiple edematous wing (mew) and scab (scb), which encode betaPS, alphaPS1 and alphaPS3 integrin subunits, respectively. Clonal analysis reveals that integrin mutations affect the trajectory of veins inside the provein domain and/or their width and that misexpression of sog can alter the behavior of cells in such clones. In addition, we show that a low molecular weight form of Sog protein binds to alphaPS1betaPS. We find that Sog can diffuse from its intervein site of production into adjacent provein domains, but only on the dorsal surface of the wing, where Sog interacts functionally with integrins. Finally, we show that Sog diffusion into provein regions and the reticular pattern of extracellular Sog distribution in wild-type wings requires mys and mew function. We propose that integrins act by binding and possibly regulating the activity/availability of different forms of Sog during pupal development through an adhesion independent mechanism.  相似文献   

8.
9.
10.
The BMP pathway patterns the dorsal region of the Drosophila embryo. Using an antibody recognizing phosphorylated Mad (pMad), we followed signaling directly. In wild-type embryos, a biphasic activation pattern is observed. At the cellular blastoderm stage high pMad levels are detected only in the dorsal-most cell rows that give rise to amnioserosa. This accumulation of pMad requires the ligand Screw (Scw), the Short gastrulation (Sog) protein, and cleavage of their complex by Tolloid (Tld). When the inhibitory activity of Sog is removed, Mad phosphorylation is expanded. In spite of the uniform expression of Scw, pMad expansion is restricted to the dorsal domain of the embryo where Dpp is expressed. This demonstrates that Mad phosphorylation requires simultaneous activation by Scw and Dpp. Indeed, the early pMad pattern is abolished when either the Scw receptor Saxophone (Sax), the Dpp receptor Thickveins (Tkv), or Dpp are removed. After germ band extension, a uniform accumulation of pMad is observed in the entire dorsal domain of the embryo, with a sharp border at the junction with the neuroectoderm. From this stage onward, activation by Scw is no longer required, and Dpp suffices to induce high levels of pMad. In these subsequent phases pMad accumulates normally in the presence of ectopic Sog, in contrast to the early phase, indicating that Sog is only capable of blocking activation by Scw and not by Dpp.  相似文献   

11.
In the early Drosophila embryo, Bone morphogenetic protein (BMP) activity is positively and negatively regulated by the BMP-binding proteins Short gastrulation (Sog) and Twisted gastrulation (Tsg). We show here that a similar mechanism operates during crossvein formation, utilizing Sog and a new member of the tsg gene family, encoded by the crossveinless (cv) locus. The initial specification of crossvein fate in the Drosophila wing requires signaling mediated by Dpp and Gbb, two members of the BMP family. cv is required for the promotion of BMP signaling in the crossveins. Large sog clones disrupt posterior crossvein formation, suggesting that Sog and Cv act together in this context. We demonstrate that sog and cv can have both positive and negative effects on BMP signaling in the wing. Moreover, Cv is functionally equivalent to Tsg, since Tsg and Cv can substitute for each other's activity. We also confirm that Tsg and Cv have similar biochemical activities: Sog/Cv complex binds a Dpp/Gbb heterodimer with high affinity. Taken together, these studies suggest that Sog and Cv promote BMP signaling by transporting a BMP heterodimer from the longitudinal veins into the crossvein regions.  相似文献   

12.
A highly conserved TGF-&bgr; signaling pathway is involved in the establishment of the dorsoventral axis of the vertebrate embryo. Specifically, Bone Morphogenetic Proteins (Bmps) pattern ventral tissues of the embryo while inhibitors of Bmps, such as Chordin, Noggin and Follistatin, are implicated in dorsal mesodermal and neural development. We investigated the role of Tolloid, a metalloprotease that can cleave Chordin and increase Bmp activity, in patterning the dorsoventral axis of the zebrafish embryo. Injection of tolloid mRNA into six dorsalized mutants rescued only one of these mutants, mini fin. Through chromosomal mapping, linkage and cDNA sequence analysis of several mini fin alleles, we demonstrate that mini fin encodes the tolloid gene. Characterization of the mini fin mutant phenotype reveals that Mini fin/Tolloid activity is required for patterning ventral tissues of the tail: the ventral fin, and the ventroposterior somites and vasculature. Gene expression studies show that mfn mutants exhibit reduced expression of ventrally restricted markers at the end of gastrulation, suggesting that the loss of ventral tail tissues is caused by a dorsalization occurring at the end of gastrulation. Based on the mini fin mutant phenotype and the expression of tolloid, we propose that Mini fin/Tolloid modifes the Bmp activity gradient at the end of gastrulation, when the ventralmost marginal cells of the embryo are in close proximity to the dorsal Chordin-expressing cells. At this time, unimpeded Chordin may diffuse to the most ventral marginal regions and inhibit high Bmp activity levels. In the presence of Mini fin/Tolloid, however, Chordin activity would be negatively modulated through proteolytic cleavage, thereby increasing Bmp signaling activity. This extracellular mechanism is amplified by an autoregulatory loop for bmp gene expression.  相似文献   

13.
Bone morphogenetic proteins (BMPs) regulate dorsal/ventral (D/V) patterning across the animal kingdom; however, the biochemical properties of certain pathway components can vary according to species-specific developmental requirements. For example, Tolloid (Tld)-like metalloproteases cleave vertebrate BMP-binding proteins called Chordins constitutively, while the Drosophila Chordin ortholog, Short gastrulation (Sog), is only cleaved efficiently when bound to BMPs. We identified Sog characteristics responsible for making its cleavage dependent on BMP binding. "Chordin-like" variants that are processed independently of BMPs changed the steep BMP gradient found in Drosophila embryos to a shallower profile, analogous to that observed in some vertebrate embryos. This change ultimately affected cell fate allocation and tissue size and resulted in increased variability of patterning. Thus, the acquisition of BMP-dependent Sog processing during evolution appears to facilitate long-range ligand diffusion and formation of a robust morphogen gradient, enabling the bistable BMP signaling outputs required for early Drosophila patterning.  相似文献   

14.
Pathways for regulation of signaling by transforming growth factor-β family members are poorly understood at present. The best genetically characterized member of this family is encoded by the Drosophila gene decapentaplegic (dpp), which is required for multiple events during fly development. We describe here the results of screens for genes required to maximize dpp signaling during embryonic dorsal-ventral patterning. Screens for genetic interactions in the zygote have identified an allele of tolloid, as well as two novel alleles of screw, a gene recently shown to encode another bone morphogenetic protein-like polypeptide. Both genes are required for patterning the dorsalmost tissues of the embryo. Screens for dpp interactions with maternally expressed genes have identified loss of function mutations in Mothers against dpp and Medea. These mutations are homozygous pupal lethal, engendering gut defects and severely reduced imaginal disks, reminiscent of dpp mutant phenotypes arising during other dpp-dependent developmental events. Genetic interaction phenotypes are consistent with reduction of dpp activity in the early embryo and in the imaginal disks. We propose that the novel screw mutations identified here titrate out some component(s) of the dpp signaling pathway. We propose that Mad and Medea encode rate-limiting components integral to dpp pathways throughout development.  相似文献   

15.
The formation of the BMP gradient which patterns the DV axis in flies and vertebrates requires several extracellular modulators like the inhibitory protein Sog/Chordin, the metalloprotease Tolloid (Tld), which cleaves Sog/Chordin, and the CR domain protein Twisted gastrulation (Tsg). While flies and vertebrates have only one sog/chordin gene they possess several paralogues of tld and tsg. A simpler and probably ancestral situation is observed in the short-germ beetle Tribolium castaneum (Tc), which possesses only one tld and one tsg gene. Here we show that in T. castaneum tld is required for early BMP signalling except in the head region and Tc-tld function is, as expected, dependent on Tc-sog. In contrast, Tc-tsg is required for all aspects of early BMP signalling and acts in a Tc-sog-independent manner. For comparison with Drosophila melanogaster we constructed fly embryos lacking all early Tsg activity (tsg;;srw double mutants) and show that they still establish a BMP signalling gradient. Thus, our results suggest that the role of Tsg proteins for BMP gradient formation has changed during insect evolution.  相似文献   

16.
Navigation of motoneuronal growth cones toward the somatic musculature in Drosophila serves as a model system to unravel the molecular mechanisms of axon guidance and target selection. In a large-scale mutagenesis screen, we identified piranha, a motor axon guidance mutant that shows strong defects in the neuromuscular connectivity pattern. In piranha mutant embryos, permanent defasciculation errors occur at specific choice points in all motor pathways. Positional cloning of piranha revealed point mutations in tolloid-related 1 (tlr1), an evolutionarily conserved gene encoding a secreted metalloprotease. Ectopic expression of Tlr1 in several tissues of piranha mutants, including hemocytes, completely restores the wild-type innervation pattern, indicating that Tlr1 functions cell non-autonomously. We further show that loss-of-function mutants of related metalloproteases do not have motor axon guidance defects and that the respective proteins cannot functionally replace Tlr1. tlr1, however, interacts with sidestep, a muscle-derived attractant. Double mutant larvae of tlr1 and sidestep show an additive phenotype and lack almost all neuromuscular junctions on ventral muscles, suggesting that Tlr1 functions together with Sidestep in the defasciculation process.  相似文献   

17.
The sensitivity of the crossveins of the Drosophila wing to reductions in BMP signaling provides a valuable system for characterizing members of this signaling pathway. We demonstrate here two reasons for that sensitivity. First, the initial stage of posterior crossvein development depends on BMP signaling but is independent of EGF signaling. This is the opposite of the longitudinal veins, which rely of EGF signaling for their initial specification. Second, BMP signaling in the posterior crossvein depends on Decapentaplegic (Dpp) at a stage when it is being produced in the longitudinal veins. Thus, the posterior crossvein will be especially vulnerable to reductions in the levels or range of Dpp signaling. We investigated the roles of the BMP receptor Thickveins (Tkv) and the BMP inhibitor Short gastrulation (Sog) in allowing this long-range signaling. Expression of both is downregulated in the developing posterior crossvein. The Tkv downregulation depends on BMP signaling and may provide a positive feedback by allowing the spread of Dpp. The Sog downregulation is independent of BMP signaling; Sog misexpression experiments indicate that this prepattern is essential for posterior crossvein development. However, this requirement can be overridden by co-misexpression of the BMP agonist Cv-2, indicating the presence of as yet unknown cues; we discuss possible candidates.  相似文献   

18.
Toll-like receptors (TLRs) are the key molecular sensors used by the mammalian innate immune system to detect various types of pathogens. Tlr13 is a novel and uncharacterized member of the mammalian TLR family. Here we report the cloning and characterization of tlr13. Tlr13 is predominantly expressed in the spleen, particularly in dendritic cells and macrophages. Tlr13 appears to activate a MyD88- and TAK1-dependent TLR signaling pathway, inducing the activation of NF-κB. This receptor can also activate type 1 interferon through IRF7. Furthermore, Tlr13 seems to be another intracellular TLR. Remarkably, cells expressing tlr13 fail to respond to known TLR ligands but instead respond specifically to vesicular stomatitis virus. Cells with the knockdown of tlr13 are highly susceptible to vesicular stomatitis virus infection. Thus, these results provide an important insight into the potential role of the novel Toll-like receptor tlr13 in the recognition of viral infection.  相似文献   

19.
20.
Drosophila tolloid (TLD) is a member of a family of proteinases that play important roles in development and includes mammalian tolloid (mTLD) and bone morphogenetic protein (BMP)-1. TLD accentuates the activity of decapentaplegic (DPP), a transforming growth factor beta superfamily growth factor, by cleaving its antagonist Short gastrulation (Sog). Similarly, the activity of BMP-2/4 (vertebrate homologues of DPP) is augmented by cleavage of chordin. However, whereas TLD is an effective Sogase, mTLD is a poor chordinase and is functionally replaced by its smaller splice variant BMP-1, which lacks the most C-terminal epidermal growth factor (EGF)-like and CUB domains of mTLD. Moreover, the minimal chordinase activity resides in the N-terminal half of BMP-1. This study showed that the proteolytic activity of TLD is considerably enhanced by Ca2+ and tested the hypothesis that the Sogase activity of TLD resides in the N-terminal half of the proteinase. Unexpectedly, it was found that TLD lacking the CUB4 and CUB5 domains and/or the EGF-like domains was unable to cleave Sog. Loss of function mutations have been reported in the tld gene that result in amino acid substitutions at E835K (in CUB4), S915L (in CUB5), and N760I (in EGF2) in TLD. The CUB mutants were found to be ineffective Sogases, but the activity of the EGF2 mutant was unchanged. The results show that substrate recognition and cleavage by Drosophila tolloid and mTLD are different despite their identical domain structure and homologous functions in patterning. The result that the N760I mutant has full Sogase activity suggests that novel substrates for TLD exist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号