首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J M Stringer  A J Pask  G Shaw  M B Renfree 《Heredity》2014,113(2):145-155
Genomic imprinting has been identified in therian (eutherian and marsupial) mammals but not in prototherian (monotreme) mammals. Imprinting has an important role in optimising pre-natal nutrition and growth, and most imprinted genes are expressed and imprinted in the placenta and developing fetus. In marsupials, however, the placental attachment is short-lived, and most growth and development occurs post-natally, supported by a changing milk composition tailor-made for each stage of development. Therefore there is a much greater demand on marsupial females during post-natal lactation than during pre-natal placentation, so there may be greater selection for genomic imprinting in the mammary gland than in the short-lived placenta. Recent studies in the tammar wallaby confirm the presence of genomic imprinting in nutrient-regulatory genes in the adult mammary gland. This suggests that imprinting may influence infant post-natal growth via the mammary gland as it does pre-natally via the placenta. Similarly, an increasing number of imprinted genes have been implicated in regulating feeding and nurturing behaviour in both the adult and the developing neonate/offspring in mice. Together these studies provide evidence that genomic imprinting is critical for regulating growth and subsequently the survival of offspring not only pre-natally but also post-natally.  相似文献   

2.
The discovery of SRY ended the search for the male-determining gene, but the much sought after molecular pathway that connects the gene to its phenotype remains elusive. It is timely, therefore, to consider an alternative route of inheritance that can simulate mendelian segregation. The term "threshold dichotomy" is applied to contrasting phenotypes that have their origin in multiple genes with quantitative effects and are divided by a physiological threshold. I suggest that this mechanism provides a plausible basis for male development in mammals, which is known to depend on enhanced rates of cell proliferation in the developing embryo and can be expected to require increased levels of cellular energy. The system is affected by the genetic and environmental background. I also propose that the Y chromosome minimizes the effects of these variables on XY embryos so that, barring rare exceptions, the inheritance of sex resembles a single gene effect.  相似文献   

3.
Sex chromosome pairing during male meiosis in marsupials   总被引:9,自引:0,他引:9  
Peter Sharp 《Chromosoma》1982,86(1):27-47
The pairing of the sex chromosomes at pachytene has been examined in twenty-two species of Australian marsupials, including four with complex sex chromosome systems. The axial elements of the sex chromosomes associate in all but one species. However, no synaptonemal complex has been observed between the axes of the X and Y chromosome in any of the examined species. Both the type of association between the sex chromosome axes, and the structural modifications of these axes are conserved within taxonomic groupings. In three species with complex sex chromosome systems, the t(XA), Y, A trivalents do not have a favoured relative orientation of the axes of the Y and A chromosomes, whereas in a fourth species with a t(XA1), t(A2YA2), A2 system the t(XA1) and A2 axes are in a cis arrangement with each other.  相似文献   

4.
Recent molecular studies have provided estimates of phylogeny for nearly all living and recently extinct species in the Order Dasyuromorphia, the dominant clade of insectivorous‐carnivorous marsupials in Australasia. We review these studies along with morphology‐based ones, and present an analysis of all cytochrome b, 12S rRNA, and protamine Pl gene sequences available. In light of these results, we provide a revised suprageneric classification and assess the implications of molecular and paleontological data for dasyurid cladogenesis. Molecular results divide extant dasyurids (Dasyuridae) into four major clades apart from the numbat (Myrmecobiidae) and thylacines (Thylacinidae). We recognize these clades as tribes Dasyurini (Dasyurus, Phascolosorex, and allied genera) and Phascogalini (Antechinus, Murexia, Phascogale) in the Subfamily Dasyurinae, and tribes Sminthopsini (Sminthopsis, Ningaui, Antechinomys) and Planigalini (Planigale) in the Subfamily Sminthopsinae. Each tribe shows a basal radiation of lineages corresponding to genera or species groups. Our results concur with the most recent previous synthesis of dasyurid phylogeny in many respects, but subsumption of New Guinean ‘phascolosoricines’ and ‘muricines’ within Dasyurini and Phascogalini, respectively, constitute significant differences. In particular, the sister‐pairing of ‘phascolosoricines’ with a Dasyurus‐Sarcophilus clade implied by molecular data is difficult to reconcile with anatomy. Divergence rates of mitochondrial sequences are calibrated approximately by comparing thylacine‐to‐dasyurid distances with the age of the oldest thylacinid (Badjcinus, latest Oligocene). Estimated cladogenic dates suggest that extant subfamilies shared a common ancestor around 24 Mya and that major radiations began late in the mid‐Miocene, consistent with the results of previous paleontological studies. The late‐middle and late Miocene corresponds to an episode of faunal turnover in Australian marsupials (including the decline of thylacinid and bandicoot genera, as well as the rise of dasyurids) and to a time when uplift of the New Guinean highlands accelerated the transition from rainforest to drier habitats. Our findings are consistent with the hypothesis that continent‐wide climate changes modulated macroevolution across these independent marsupial clades.  相似文献   

5.
Most species of the nematode genus Caenorhabditis reproduce through males and females; C. elegans and C. briggsae, however, produce self-fertile hermaphrodites instead of females. These transitions to hermaphroditism evolved convergently through distinct modifications of germline sex determination mechanisms.  相似文献   

6.
Relationships among the seven extant orders of marsupials remain poorly understood. Most classifications recognize a fundamental split between Ameridelphia, which contains the American orders Didelphimorphia and Paucituberculata, and Australidelphia, which contains four Australasian orders (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelina) and the South American order Microbiotheria, represented by Dromiciops gliroides. Ameridelphia and Australidelphia are each supported by key morphological characters with dichotomous character states. To date, molecular studies indexing all marsupial orders have reported inconclusive results. However, several studies have suggested that Dromiciops is nested within Australidelphia. This result has important implications for understanding the biogeographic history of living marsupials. To address questions in higher-level marsupial systematics, we sequenced portions of five nuclear genes (Apolipoprotein B gene; Breast and Ovarian cancer susceptibility gene 1; Recombination activating gene 1; Interphotoreceptor retinoid binding protein gene; and von Willebrand factor gene) for representatives of all orders of marsupials, as well as placental outgroups. The resulting 6.4kb concatenation was analyzed using maximum parsimony, distance methods, maximum likelihood, and Bayesian methods. tests were used to examine a priori hypotheses. All analyses provided robust support for the monophyly of Australidelphia (bootstrap support=99-100%; posterior probability=1.00). Ameridelphia received much lower support, although this clade was not rejected in statistical tests. Within Diprotodontia, both Vombatiformes and Phalangeriformes were supported at the 100% bootstrap level and with posterior probabilities of 1.00.  相似文献   

7.
8.
Sex determining mechanisms are highly diverse. Like all Hymenoptera, the parasitic wasp Nasonia vitripennis reproduces by haplodiploidy: males are haploid and females are diploid. Sex in Nasonia is not determined by complementary alleles at sex loci. Evidence for several alternative models is considered. Recent studies on a polyploid and a gynandromorphic mutant strain point to a maternal product that is balanced against the number of chromosomal complements in the zygote and a parent-specific (imprinting) effect. Research is now focused on the molecular details of sex determination in Nasonia.  相似文献   

9.
Sex determination   总被引:1,自引:0,他引:1  
  相似文献   

10.
11.
We have mapped five human chromosome 21 (HSA 21) markers in marsupials and a monotreme, two major groups of mammals that diverged from eutherians 130-150 and 150-170 million years before present (MYrBP), respectively. We have found that these genes map to two distinct autosomal sites, one containing SOD1/CBR/BCEI and the other containing ETS2/INFAR, in the marsupials Macropus eugenii and Sminthopsis macroura (which belong to orders that diverged 40-80 MYrBP), as well as in the monotreme Ornithorhynchus anatinus (the platypus). Since marsupials and monotremes diverged independently from eutherians, these data suggest that HSA 21 genes were originally located in two separate autosomal blocks. In another Sminthopsis species, SOD1 is linked to TRF (a marker on HSA 3q), suggesting that the ancestral SOD1/CBR/BCEI region also included HSA 3 markers. We suggest that these blocks became fused early in the eutherian evolution to form a HSA 3/21 chromosome, which has remained intact in artiodactyls, but has been independently disrupted in both the primate and rodent lineages.  相似文献   

12.
Sex determination: a hypothesis based on steroid ratios   总被引:2,自引:0,他引:2  
This paper presents a hypothesis for sex determination based on the ratio of androgen to estrogen in the gonad during sexual differentiation. In vertebrates the ratio of these steroids, and therefore, the sex of an individual is controlled by the quantity of the enzyme aromatase. For animals with a ZZ, ZW sex determining mechanism, such as birds, in which the heterogametic sex is female, an inducer for the aromatase gene is postulated to be on the W chromosome. In animals with an XX, XY system in which the heterogametic sex is male, such as mammals, the Y chromosome is postulated to code for a repressor of the aromatase gene. This hypothesis can account for naturally occurring sex reversal such as seen in some fish and amphibians, experimentally induced sex reversal by administration of steroids in birds, reptiles, fish and amphibians, and temperature-dependent sex determination as in reptiles. For invertebrates the same hypothetical model applies though the specific androgenic and estrogenic steroids differ. Both the X-to-autosome ratio method of sex determination typified by fruit flies and the haplodiploid method of bees as well as hormonal control of sexual differentiation in crustaceans are accounted for by this hypothesis.  相似文献   

13.
Parasitic nematode worms of the genus Strongyloides have an alternation of many asexual, all-female generations with a sexual generation composed of males and females. Males of S. papillosus have now been shown to be produced by elimination of chromosomal material that constitutes the X chromosome in its close relatives.  相似文献   

14.
Vertebrates use many different strategies to determine sex, but the Sox9 gene is a common thread, probably acting as the pivotal gene that controls the male-determining pathway. It now appears that Sox9 is not alone in this role, and that a closely related gene, Sox8, can partly substitute for Sox9. But is this a clever backup strategy to safeguard male development, or a relic of the past?  相似文献   

15.
Sex determination in mammals   总被引:12,自引:0,他引:12  
  相似文献   

16.
In mammals, the Y chromosome induces testis formation and thus male sexual development; in the absence of a Y chromosome, gonads differentiate into ovaries and female development ensues. Molecular genetic studies have identified the Y-located testis determining gene SRY as well as autosomal and X-linked genes necessary for gonadal development. The phenotypes resulting from mutation of these genes, together with their patterns of expression, provide the basis for establishing a hierachy of genes and their interactions in the mammalian sex determination pathway.  相似文献   

17.
Sex determination in plants   总被引:1,自引:0,他引:1  
Sex determination is an important developmental event in the life cycle of all sexually reproducing plants. Recent studies of sex determination in many plant species, from ferns to maize, have been fruitful in identifying the diversity of genetic and epigenetic factors that are involved in determining the sex of the flower or individual. In those species amenable to genetic analysis, significant progress has been made toward identifying mutations that affect sex expression. By studying the interactions among these genes, pictures of how sex-determining signals are perceived to activate or repress male- or female-specific genes are emerging.  相似文献   

18.
The sex-determination system of the unicellular green alga, Chlamydomonas reinhardtii, is governed by genes in the mating-type (MT) locus and entails additional genes located in autosomes. Gene expression is initiated by nitrogen starvation, and cells differentiate into plus or minus gametes within 6h. Reviewed is our current understanding of gametic differentiation and fertilization, initiation of zygote development, and the uniparental inheritance of organelle genomes.  相似文献   

19.
Sex determination is an intriguing system in trioecious papaya. Over the past seven decades various hypotheses, based on the knowledge and information available at the time, have been proposed to explain the genetics of the papaya's sex determination. These include a single gene with three alleles, a group of closely linked genes, a genic balance of sex chromosome over autosomes, classical XY chromosomes, and regulatory elements of the flower development pathway. Recent advancements in genomic technology make it possible to characterize the genomic region involved in sex determination at the molecular level. High density linkage mapping validated the hypothesis that predicted recombination suppression at the sex determination locus. Physical mapping and sample sequencing of the non-recombination region led to the conclusion that sex determination is controlled by a pair of primitive sex chromosomes with a small male-specific region (MSY) of the Y chromosome. We now postulate that two sex determination genes control the sex determination pathway. One, a feminizing or stamen suppressor gene, causes stamen abortion before or at flower inception while the other, a masculinizing or carpel suppressor gene, causes carpel abortion at a later flower developmental stage. Detailed physical mapping is beginning to reveal structural details about the sex determination region and sequencing is expected to uncover candidate sex determining genes. Cloning of the sex determination genes and understanding the sex determination process could have profound application in papaya production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号